Math, asked by CopyThat, 1 month ago

The sum of the solutions of the equation |√x - 2| + √x(√x - 4) + 2 = 0, (x > 0) is __ ?
(Is it 10?)

Answers

Answered by amitkumar44481
41

Answer :

10.

Solution :

 \tt  \: Q. \:  \: f(x) = | \sqrt{x} - 2 |  +  \sqrt{x} ( \sqrt{x} - 4) + 2 = 0, \: where  \: x>0. \\  \\

Now, Let √x = t.

=> t - 2 = 0.

=> t = 2.

______________

Case 1.

  • t ≥ 2.

\tt \longrightarrow t  - 2 +  {t}^{2}  - 4t + 2 = 0. \\  \\

\tt \longrightarrow  {t}^{2}  -3t = 0. \\  \\

 \tt \longrightarrow  t= 3. \\  \\

\tt \longrightarrow   \sqrt{x}  = 3. \\  \\

\tt \longrightarrow   x  = 9 \: , \: 0. \\  \\

______________

Case 2.

  • x < 2.

 \tt \longrightarrow 2  - t +  {t}^{2}  - 4t + 2 = 0. \\  \\

 \tt \longrightarrow {t}^{2}  - 5t + 4 = 0. \\  \\

 \tt \longrightarrow (t - 4)(t - 1)= 0. \\  \\

 \tt \longrightarrow t= 1 \: , 4 . \\  \\

 \tt \longrightarrow  \sqrt{x}  = 1  \: , 4.\\  \\

\tt \longrightarrow  x = 1  \: , 16.\\  \\

___________________________

Substitute the solution of given equation

 \tt  \longrightarrow| \sqrt{16} - 2 |  +  \sqrt{16} ( \sqrt{16} - 4) + 2 = 0. \\  \\

\tt  \longrightarrow| 4 - 2 |  +  4 (4 - 4) + 2 = 0. \\  \\

\tt  \longrightarrow| 2 |  +  0 + 2 = 0. \\  \\

\tt  \longrightarrow4  \neq 0. \\  \\

___________________________

 \tt  \longrightarrow  \red{x \neq 16 \: , \: 0}. \\  \\

  • Sum of all solution of given equation is 1 + 9 = 10.
  • The sum of the solutions of the function f( x ) is 10.
Answered by Anonymous
66

 \large \dag Question :-

The sum of the solutions of the equation

 | \sqrt{x} - 2 |  +  \sqrt{x}( \sqrt{x}   - 4) + 2 = 0 \:  \:where  \:  \: (x &gt; 0)

Is, ____?.

 \large \dag Answer :-

 \sf\tt\large{\red {\underline {\underline{⚘\;The \;Sum \;of \;the \;Solutions \;the \;equation \;is:}}}}

 \sf\tt\large{\red {\underline {\underline{⚘\;10 :}}}}

 \large \dag Solutions :-

According to the given question,

Consider,

 \sqrt{x}  = k

Where,

  • K - 2 = 0
  • k = 2.

Here,

First consider two case ,

Now, lets take

 \large \dag (i) Case :-

k \geqslant 2

k - 2 +  {k}^{2}  - 4k + 2 = 0

 {k}^{2}  - 3k = 0 = k = 3

 \sqrt{x}  = 3

x = 9,0

Now,

 \large \dag (ii)Case :-

k &lt; 2

2 - k +  {k}^{2}  - 4k + 2 = 0

 {k}^{2}  - 5k + 4 = 0

(k - 4)(k - 1) = 1,4

 \sqrt{x}  = 1,4

x = (1,16)

Now,

  • Here by substituting all of the values we get that ,

 | \sqrt{16}  - 2|  +  \sqrt{16} ( \sqrt{16}  - 4) + 2 = 0

 =  |4 - 2|  + 4(4 - 4) + 2 = 0

 |2|  + 0 + 2 = 0

Therefore,

  • 4 is not equal to zero .
  • And also we can tell that,

  • x is not equal to 16,0

At finally we come to know that,

  • The sum of solutions of the equation of the given question is 10.

 \large \dag Hope it helps u mate .

 \large \dag Thank you .


amitkumar44481: Good :-)
Similar questions