Math, asked by Abhishekkushwa4073, 1 year ago

The sum of the square of two number is 233 and one number is 3 lehan twice the other number find the other number

Answers

Answered by kindanushka14
0

let the first no.be x

other no.is  2x-3

so (2x-3)^2+x^2 =233

4x^2-12x+9+x^2=233

on simplifying and transposing we get 

5x^2-12x-224=0


Trying to factor by splitting the middle term

 1.1     Factoring  5x2-12x-224 


The first term is,  5x2  its coefficient is  5 .

The middle term is,  -12x  its coefficient is  -12 .

The last term, "the constant", is  -224 


Step-1 : Multiply the coefficient of the first term by the constant   5 • -224 = -1120 


Step-2 : Find two factors of  -1120  whose sum equals the coefficient of the middle term, which is   -12 .


    -1120   +   1   =   -1119     -560   +   2   =   -558     -280   +   4   =   -276     -224   +   5   =   -219     -160   +   7   =   -153     -140   +   8   =   -132     -112   +   10   =   -102     -80   +   14   =   -66     -70   +   16   =   -54     -56   +   20   =   -36     -40   +   28   =   -12   That's it


Step-3 : Rewrite the polynomial splitting the middle term using the two factors found in step 2 above,  -40  and  28 

                    5x2 - 40x + 28x - 224


Step-4 : Add up the first 2 terms, pulling out like factors :

                   5x • (x-8)

             Add up the last 2 terms, pulling out common factors :

                   28 • (x-8)

Step-5 : Add up the four terms of step 4 :

                   (5x+28)  •  (x-8)

            Which is the desired factorization


Equation at the end of step  1  : (x - 8) • (5x + 28) = 0

x=8/-28/5

2x-3=15(if x=8)or -71/5(if x=-28/5)


Read more on Brainly.in - https://brainly.in/question/784428#readmore

Similar questions