the sum of the squares of 2 positive integers is 208. if the square of larger number is 18 times the smaller , find the numbers
Answers
Answered by
3
Let the nos. be x and y
∴x²+y²=208 (i)
∴x²=18y (ii)
Now, putting the value of x² in (i)
18y+y²=208
⇒y²+18y-208=0
⇒y=-18+-(324+832)^(1/2)/2
⇒y=-18+-(1156)^(1/2)/2
⇒y=-18+-34/2
⇒y=-18+34/2 or -18-34/2
⇒y=16/2 or -52/2
⇒y=8 or -26
Putting the value of y=8 in (i)
x²+8²=208
⇒x²+64=208
⇒x²=208-64
⇒x²=144
⇒x=12
Answered by
4
Sum of 2 positive integer= 208
Let smaller no= X
Let larger no= 18x
= X2+18x=208
= X2 +18x- 208=0
X2 +26x-6x-208=0
X( x+26)8( x+26)
(X+26) ( x+8)
X- 26= 0 , x+8= 0
Thus a square can't be negative
So x-26= 0(Ignored)
Thus x= 8 &
Larger no= 18(8)
✓ 144= 12
Thus the numbers are 8& 12
Hope it helps you
Mark me the brainliest
Similar questions