Math, asked by abdullaadhil5648, 9 months ago

the sum of the squares of three consecutive natural number is 110 find the numbers

Answers

Answered by Ataraxia
9

\bf\huge{ANSWER}

Let the three consecutive numbers be x , ( x + 1 ) and ( x + 2 ) .

\rm\longrightarrow  x^2+(x+1)^2+(x+2)^2=110\\\\\longrightarrow x^2+x^2+2x+1+x^2+4x+4=110\\\\\longrightarrow 3x^2+6x+5=110\\\\\longrightarrow 3x^2+6x=110-5\\\\\longrightarrow 3x^2+6x=105\\\\\longrightarrow 3x^2+6x-105=0\\\\\longrightarrow x^2+2x-35=0\\\\\longrightarrow x^2+7x-5x-35=0\\\\\longrightarrow x(x+7)-5(x-7)=0\\\\\longrightarrow (x+7)(x-5)=0\\\\\longrightarrow x=-7 \ or \ x=5

Natural numbers cannot be negative .

Required numbers are 5 , 6 and 7 .

Answered by Unni007
5

Given,

  • Sum of the squares of three consecutive natural number = 110

Let the three consecutive numbers be x , ( x + 1 ) and ( x + 2 ) .

\implies\displaystyle\sf{x^2+(x+1)^2+(x+2)^2=110}

\implies\displaystyle\sf{(x^2)+(x^2+2x+1)+(x^2+4x+4)=110}

\implies\displaystyle\sf{x^2+x^2+2x+1+x^2+4x+4=110}

\implies\displaystyle\sf{3x^2+6x+5=110}

\implies\displaystyle\sf{3x^2+6x+5-110=0}

\implies\displaystyle\sf{3x^2+6x-105=0}

Dividing all the terms by 3 ,

\implies\displaystyle\sf{x^2+2x-35=0}

\implies\displaystyle\sf{(x+7)(x-5)=0}

\implies\displaystyle\sf{x=-7\:or\:5}

The numbers cannot be negative since they are natural numbers,

\implies\displaystyle\sf{x=5}

Therefore the terms are :

\implies\displaystyle\sf{x=5}

\implies\displaystyle\sf{x+1=6}

\implies\displaystyle\sf{x+3=7}

\boxed{\displaystyle\sf{\therefore\:The\:Numbers\:are\:\:5\:,6\:,\:7}}

Similar questions