The sum of the squares of three consecutive odd numbers is 2531 . find the numbers.
Answers
Answered by
3
Let x be an odd number.
x2+(x+2)2+(x+4)2=2531x2+(x+2)2+(x+4)2=2531
x2+x2+4x+4+x2+8x+16=2531x2+x2+4x+4+x2+8x+16=2531
3x2+12x+20=25313x2+12x+20=2531
3x2+12x−2511=03x2+12x−2511=0
x2+4x−837=0x2+4x−837=0
(x+31)(x−27)=0(x+31)(x−27)=0
Hence,x=−31Hence,x=−31 or x=27x=27
We take positive value of x.
Hence, x = 27
The odd numbers are 27, 29 and 31.
HENCE, THE LARGEST NUMBER IS 31.
x2+(x+2)2+(x+4)2=2531x2+(x+2)2+(x+4)2=2531
x2+x2+4x+4+x2+8x+16=2531x2+x2+4x+4+x2+8x+16=2531
3x2+12x+20=25313x2+12x+20=2531
3x2+12x−2511=03x2+12x−2511=0
x2+4x−837=0x2+4x−837=0
(x+31)(x−27)=0(x+31)(x−27)=0
Hence,x=−31Hence,x=−31 or x=27x=27
We take positive value of x.
Hence, x = 27
The odd numbers are 27, 29 and 31.
HENCE, THE LARGEST NUMBER IS 31.
Answered by
2
therefore largest no is 31
hope it helps you.
hope it helps you.
Attachments:
Similar questions