the sum of the squares of two consecutive odd positive integers is 290 find them.
Answers
Answered by
4
we can let the 2 consecutive odd number be x and x+2
Acc,
⇒x²+(x+2)²=290
⇒x²+x²+4x+4=290
⇒2x²+4x+4=290
⇒2x²+4x=290-4
⇒2x²+4x=286
⇒x²+2x=143[Taking 2 in common]
⇒x²+2x-143=0
⇒x²+13x-11x-143=0
⇒x(x+13)-11(x+13)=0
⇒(x+13)(x-11)
=========================================
x+13=0
x=-13
------------------------------------------------------------------------
x-11=0
x=11
-----------------------------------------------------------------------
As 11 is a posite number we are taking the value of x to be 11
⇒(x+2)=11+2=13
=========================================
Hence the two consecutive odd positive integers are 11 and 13.
Acc,
⇒x²+(x+2)²=290
⇒x²+x²+4x+4=290
⇒2x²+4x+4=290
⇒2x²+4x=290-4
⇒2x²+4x=286
⇒x²+2x=143[Taking 2 in common]
⇒x²+2x-143=0
⇒x²+13x-11x-143=0
⇒x(x+13)-11(x+13)=0
⇒(x+13)(x-11)
=========================================
x+13=0
x=-13
------------------------------------------------------------------------
x-11=0
x=11
-----------------------------------------------------------------------
As 11 is a posite number we are taking the value of x to be 11
⇒(x+2)=11+2=13
=========================================
Hence the two consecutive odd positive integers are 11 and 13.
Answered by
2
Hey there!
Let the first number be x,
then the consecutive odd number is x+2.
Given
➫x²+(x+2)²=290
➫x²+x²+4+4x=290
➫2x²+4x+4=290
➫2(x²+2x+2)=290
➫x²+2x+2=145
➫x²+2x+2-145=0
➫ x²+2x-143=0
➫x²+13x-11x-143=0
➫x(x+13)-11(x+13)=0
➫(x+13)(x-11)=0
➫x≠-13,x=11
So, x+2=13
11,13 are the numbers whose sum of squares is 290
11²+13²=121+169=290
hope helped!
Let the first number be x,
then the consecutive odd number is x+2.
Given
➫x²+(x+2)²=290
➫x²+x²+4+4x=290
➫2x²+4x+4=290
➫2(x²+2x+2)=290
➫x²+2x+2=145
➫x²+2x+2-145=0
➫ x²+2x-143=0
➫x²+13x-11x-143=0
➫x(x+13)-11(x+13)=0
➫(x+13)(x-11)=0
➫x≠-13,x=11
So, x+2=13
11,13 are the numbers whose sum of squares is 290
11²+13²=121+169=290
hope helped!
Similar questions