Math, asked by priya74721, 3 months ago


The sum of the squares of two
Consecutive positive even integer is 340
Find the integers.​

Answers

Answered by paridhimalhotra07
6

Let the two integers be x and (x + 2)

According to the question

 {x}^{2}  +  {(x + 2)}^{2}  = 340  \\  {x }^{2}  +  {x}^{2}  + 4x + 4 = 340 \\ 2 {x}^{2}  + 4x - 336 = 0 \\  {x}^{2}  + 2x - 168 = 0 \\  {x}^{2}  + 14x - 12x - 168 = 0 \\ x(x + 14) - 12(x + 14) = 0 \\ (x + 14)(x - 12) = 0 \\ x =  - 14 \: or \: 12 \\  \\ since \: x \: is \: a \: positive \: integer \\ x = 12 \\ x + 2 = 14

there you go :)

Answered by mahendra15aug
3

Answer:

HOW TO SOLVE?

let \: the \: numbers \: be \:  \\  {x}^{2}  \:  and \:  {x}^{2}  + 2 \\  {x}^{2}  +  {x}^{2}  + 2 = 340 \\ 2 {x}^{2}  + 2 = 340 \\ 2 {x}^{2}  = 340 - 2 \\ 2 {x}^{2}  = 338 \\  {x}^{2} =  \frac{338}{2}   \\  {x}^{2}  = 169 \\  \sqrt{ {x}^{2} }  =  \sqrt{169}  \\ x = 13 \\ the \: numbers \: are \:   {13}^{2}  = 169 \: and \:  \\  {13}^{2}  + 2 = 171

The numbers are 169 and 171.

HAVE A NICE DAY!!!

HOPE IT HELPS YOU!!!

Similar questions