the sum of the squares of two positive integer is 208. if the square of the larger number is 18 times the smaller number find the numbers.
Answers
Answered by
13
so let the smaller number be x and the larger number be y
so according to question
x² + y² = 208 . . . . . . i
y² =18x² . . . . . . ii
using i and ii
we get
x² + 18x² - 208 = 0
⇒ x² + 26x - 8x - 208 = 0
⇒ (x + 26)(x - 8) = 0
so x = 8 or - 26
so x = 8
neglecting negative value
so y = √(208 - 64)
⇒ y = 12 or - 12
so y = 12
neglecting negative value
so
smaller number is 8 and larger number is 12 ANSWER
so according to question
x² + y² = 208 . . . . . . i
y² =18x² . . . . . . ii
using i and ii
we get
x² + 18x² - 208 = 0
⇒ x² + 26x - 8x - 208 = 0
⇒ (x + 26)(x - 8) = 0
so x = 8 or - 26
so x = 8
neglecting negative value
so y = √(208 - 64)
⇒ y = 12 or - 12
so y = 12
neglecting negative value
so
smaller number is 8 and larger number is 12 ANSWER
Anonymous:
hope this helps
Answered by
5
n²+t²=208
n²=18t²
t²+18t²=208
t²+18t²+81=208+81
(t+9)²=289
t+9=√289=17
t=17-9=8
n²+64=208
n²=144
n=12
numbers=8,12
n²=18t²
t²+18t²=208
t²+18t²+81=208+81
(t+9)²=289
t+9=√289=17
t=17-9=8
n²+64=208
n²=144
n=12
numbers=8,12
Similar questions