Math, asked by chigu83, 11 months ago

the sum of the third and the seventh terms of an AP js 6 and their product is 8. Find the sum of the first sixteen terms of the AP​

Answers

Answered by mddilshad11ab
116

\sf\large\underline{Given:}

  • \rm{The\:sum\:of\:3rd\:and\:7th\: term=6}
  • \rm{The\: product\:of\:the\:term=8}

\sf\large\underline{To\: Find:}

  • \rm{The\:sum\:of\:1st\:16th\: terms=?}

\sf\large\underline{Solution:}

  • At first find the value of first term and common difference of AP. Than calculate the sum of 1st 16th terms]

\rm{\implies Let,\: first\:term=a\: common\: difference=d}\sf\large\underline{Formula\: used:}

\rm{\implies T_{n}=a+(n-1)d}

\rm{\implies The\:sum\:of\:3rd\:7th\: terms=6}

\rm{\implies a+2d+a+6d=6}

\rm{\implies 2a+8d=6}

  • Dividing by 2 on both sides]

\rm{\implies a+4d=3-----(i)}

\rm{\implies a=3-4d}

  • Now, calculate product of the terms]

\rm{\implies (a+2d)(a+6d)=8}

\rm{\implies a^2+8ad+12d^2-8=0----(ii)}

  • Putting the value of a=3-4d here]

\rm{\implies (3-4d)^2+8(3-4d)d+12d^2-8=0}

\rm{\implies 9-24d+16d^2+24d-32d^2-8=0}

\rm{\implies -16d^2+1=0}

\rm{\implies 16d^2=1}

\rm{\implies d=\dfrac{1}{4}}

  • Now putting the value of d=1/4 in eq 1]

\rm{\implies a+4d=3}

\rm{\implies a+4\times\dfrac{1}{4}=3}

\rm{\implies a+1=3}

\rm{\implies a=3-1}

\rm{\implies a=2}

  • Now, calculate the sum of 1st 16th term by using formula]

\rm{\implies S_{n}=\dfrac{n}{2}[2a+(n-1)d]}

\rm{\implies S_{16}=\dfrac{16}{2}[2\times\:2+(16-1)\dfrac{1}{4}]}

\rm{\implies S_{16}=\dfrac{16}{2}[4+\dfrac{15}{4}]}

\rm{\implies S_{16}=\dfrac{16}{2}[\dfrac{16+15}{4}]}

\rm{\implies S_{16}=\dfrac{16}{2}\times\dfrac{31}{4}}

\rm{\implies S_{16}=31\times 2}

\rm{\implies S_{16}=62}

\sf\large{Hence,}

\rm{\implies The\:sum\:of\:1st\:16th\: terms=62}

Similar questions