Math, asked by sandhyasham1998, 4 months ago

The sum of three consecutive positive even
integers is 9o. Find the numbers.​

Answers

Answered by manjumeena22334455
0

Let,

The three consecutive integer = x, x+ 1 , x+ 2

x, x+ 1 , x+2 = 90

x + x + 1 + x+ 2 = 90

3x + 3 = 90

3x = 90 - 3

3x = 87

x = 87 / 3

x = 29

So,

The three consecutive integer

x

= 29

x+ 1

29 + 1

= 30

x+ 2

29 + 2

= 31

Answered by MrAnonymous412
5

\\ \large✠  \rm \underline{ \:  Required \:  Question :- } \\  \\

★ The sum of three consecutive positive even integers is 90. Find the numbers.

\\ \large✠  \rm \underline{ \:  Answer :- } \\  \\

 \\  \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \longrightarrow \: 29 ,30 \: and \: 31 \\  \\

\\ \large✠  \rm \underline{ \:  Solution :- } \\  \\

 \\  \:  \:  \sf \:  \:  \:  \:  \: Let ,  \: the \:  three  \: consecutive \:  positive \:  integers \:

  \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: be \: x , (x + 1) \: and \: (x + 2) \\  \\

 \\  \\  \sf\: Now,  \: According \:  to  \: the \:  question \\  \\

The sum of three consecutive positive even

integers is 90.

 \\  \\  \sf  \:  \: \therefore \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: x + x + 1 + x + 2 \:  =  \: 90  \\  \\

 \\  \\  \:  \:  \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:➝  \:  \: \: x + x + x + 1 + 2 = 90 \\  \\

 \\  \\  \:  \:  \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:➝  \:  \: \: 3x + 3 = 90 \\  \\

 \\  \\  \:  \:  \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:➝  \:  \: \: 3x  = 90 - 3 \\  \\

 \\  \\  \:  \:  \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:➝  \:  \: \: 3x  = 87\\  \\

 \\  \\  \:  \:  \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:➝  \:  \: \: x  =  \frac{87}{3}\\  \\

 \\  \\  \:  \:  \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:➝  \:  \underline {\boxed{ \orange{ \tt \: x  =  29}}}\\  \\

 \\  \sf \:  \: Therefore, \\

 \\   \\ \sf \:  \:  \:  \:  \:  \: † \: The \:  value  \: of  \: x = 1st  \: number = 29 \:  \\  \\

 \\   \\ \sf \:  \:  \:  \:  \:  \: † \: The \:  value  \: of  \: (x + 1) = 2nd \: number = 29 + 1  = 30\:  \\  \\

 \\   \\ \sf \:  \:  \:  \:  \:  \: † \: The \:  value  \: of  \: (x +21) = 3rd \: number = 29 + 2 = 31\:  \\  \\

 \\  \\  \sf \:  ✧:  \:  \underline{  \:  \: The \:  consecutive  \: positive  \: integers  \: are  \: 29, 30  \: and \: 31 }

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \underline{ \sf \: respectively  \: whose \:  some \:  is \:  90.} \\  \\

Similar questions