Math, asked by rehansharma, 7 months ago

the sum of two digit no is 15. if the no formedby reserving the digit is less than the orignal no by 27 then the orignal no is​

Answers

Answered by AaminAftab21
0

\bf\green{HERE\:IS\:YOUR\:ANSWER\:}

\bf\bold\orange{MARK\:AS \:Brainliest}

Let the number =10x+y

Reversed number=10y+x

A.T.Q

x+y=15 ..........i)

10y+x=10x+y-27

10y-y+x-10x=-27

9y-9x=-27

y-x=-3..............ii)

From equation i)&ii),we get

x+y=15

-x+y=-3

2y=12

y=6

putting the value of 'y' in equation i),we get

x=9

ORIGINAL NUMBER=10x+y

=96

\bf\bold\orange{MARK\:AS \:Brainliest}

Answered by Anonymous
1

Answer:

\sf{The \ original \ number \ is \ 96.}

Given:

\sf{\leadsto{The \ sum \ of \ two \ digits \ number \ is}}

\sf{15.}

\sf{\leadsto{The \ number \ formed \ by \ reversing \ the}}

\sf{digits \ is \ less \ than \ the \ original \ number \ by}

\sf{27.}

To find:

\sf{The \ original \ number.}

Solution:

\sf{Let \ the \ unit's \ place \ of \ the \ two \ digit \ number}

\sf{be \ x \ and \ the \ ten's \ place \ be \ y.}

\sf{According \ to \ the \ first \ condition.}

\sf{y+x=15}

\sf{\therefore{x+y=15...(1)}}

\sf{\longmapsto{Original \ number=10y+x}}

\sf{\longmapsto{Number \ with \ reversed \ digits=10x+y}}

\sf{According \ to \ the \ second \ condition. }

\sf{10y+x=10x+y+27}

\sf{\therefore{10y-y+x-10y=27}}

\sf{\therefore{9y-9x=27}}

\sf{\therefore{9(y-x)=27}}

\sf{\therefore{y-x=\dfrac{27}{9}}}

\sf{\therefore{y-x=3}}

\sf{\therefore{-x+y=3...(2)}}

\sf{Add \ equations \ (1) \ and \ (2), \ we \ get}

\sf{x+y=15}

\sf{+}

\sf{-x+y=3}

_______________

\sf{2y=18}

\sf{\therefore{y=\dfrac{18}{2}}}

\boxed{\sf{\therefore{y=9}}}

\sf{Substitute \ y=9 \ in \ equation \ (1), \ we \ get}

\sf{x+9=15}

\sf{\therefore{x=15-9}}

\boxed{\sf{\therefore{x=6}}}

\sf{\longmapsto{Original \ number=10y+x}}

\sf{\longmapsto{Original \ number=10(9)+6}}

\sf{\longmapsto{Original \ number=90+6}}

\sf{\longmapsto{Original \ number=96}}

\sf\purple{\tt{\therefore{The \ original \ number \ is \ 96.}}}

Similar questions