Math, asked by ChromaticSoul, 8 months ago

The sum of two digit number is 11. If 63 is added to the number the digit get reversed. Find the number.




explain me​

Answers

Answered by pandaXop
12

Number = 29

Step-by-step explanation:

Given:

  • The sum of two digits of a number is 11.
  • After adding 63 to number the digit of number get reversed.

To Find:

  • What is the number ?

Solution: Let the unit and tens digit of number be y and x respectively. Therefore,

➟ x + y = 11 or x = 11 – y........(1)

➟ Number will be (10x + y)

When we reverse the dight then the new number or reversed number formed will be

➟ Reversed number = (10y + x)

A/q

  • After adding 63 to the original number the digits gets reversed.

\implies{\rm } (10x + y ) + 63 = (10y + x)

\implies{\rm } 10(11 y) + y + 63 = 10y 11 y

\implies{\rm } 110 10y + y + 63 = 10y 11 y

\implies{\rm } 173 9y = 9y + 11

\implies{\rm } 173 11 = 9y + 9y

\implies{\rm } 162 = 18y

\implies{\rm } 162/18 = y

\implies{\rm } 9 = y

Hence,

➮ Unit digit of number is y = 9

➮ Tens digit of number is x

=> (11 – y) = 11 –9 = 2

Therefore, the number will be (10x + y)

➨ 10(2) + 9 = 20 + 9 = 29

Answered by Anonymous
15

\blue{\bold{\underline{\underline{Answer:}}}}

 \:\:

 \green{\underline \bold{Given :}}

 \:\:

  • The sum of the digits of two digit number is 11

 \:\:

  • When 63 is added to the number the digit get reversed

 \:\:

 \red{\underline \bold{To \: Find:}}

 \:\:

  • The number.

 \:\:

\large{\orange{\underline{\tt{Solution :-}}}}

 \:\:

Let the ones digit be 'y'

Let the tens digit be 'x'

 \:\:

 \underline{\bold{\texttt{Original  number :}}}

 \:\:

\purple\longrightarrow  \sf 10x + y

 \:\:

 \underline{\bold{\texttt{Reversed number :}}}

 \:\:

\purple\longrightarrow  \sf 10y + x

 \:\:

 \purple{\underline \bold{According \: to \: the \ question :}}

 \:\:

⇛ x + y = 11

 \:\:

⇛ x = 11 – y --------(1)

 \:\:

Also,

 \:\:

After adding 63 to the original number the digits gets reversed.

 \:\:

⇛ (10x + y ) + 63 = (10y + x)----------(2)

 \:\:

 \underline{\bold{\texttt{Putting x = 11 - y in (2)}}}

 \:\:

⇛ 10(11 – y) + y + 63 = 10y + 11 – y

 \:\:

⇛ 110 – 10y + y + 63 = 10y + 11 – y

 \:\:

⇛ 173 – 9y = 9y + 11

 \:\:

⇛ 173 – 11 = 9y + 9y

 \:\:

⇛ 162 = 18y

 \:\:

 \rm y = \dfrac { 162 } { 18 }

 \:\:

 \bf \dashrightarrow y = 9

 \:\:

Hence,

 \:\:

  • One's digit is y = 9

 \:\:

  • Tens digit of number is x

 \:\:

⇛ (11 – y) = 11 –9 = 2

 \:\:

 \underline{\bold{\texttt{Original number -}}}

 \:\:

⇛ (10x + y)

 \:\:

⇛ 10(2) + 9 = 20 + 9

 \:\:

\purple\longrightarrow  \bf 29

\rule{200}5

Similar questions