The sum of two digits number 12 if the digits are reserved the new number is less 12 than twice the orginal number find the orginal number
Answers
The sum of two digits number 12 if the digits are reserved the new number is less 12 than twice the orginal number.
Find the original number
★ Let the ten's digit be x and one's
digit be y
- Original number = 10x + y
✞ According to the given condition
✰Sum of two digits number 12
- x + y = 12 ---(i)
✰If the digits are reserved the new number is less 12 than twice the orginal number
- Reversed number = 10y + x
- 2(10x + y) - (10y + x) = 12
➟ 20x + 2y - 10y - x = 12
➟ 19x - 8y = 12 ---(ii)
✞ Multiply (i) by 8 and (ii) by 1
- 8x + 8y = 96
- 19x - 8y = 12
✞ Add both the equations
➟ (8x + 8y) + (19x - 8y) = 96 + 12
➟ 8x + 8y + 19x - 8y = 108
➟ 27x = 108
➟ x = 108/27
➟ x = 4
✞ Put the value of x in eqⁿ (i)
➟ x + y = 12
➟ 4 + y = 12
➟ y = 12 - 4
➟ y = 8
Let the two digits number be " xy "
i.e., 10 x + y
If the digits are reversed new number will be " 10 y + x "
A/c " The sum of two digits number 12 "
⇒ x + y = 12 ... (1)
A/c " if the digits are reserved the new number is less 12 than twice the original number "
⇒ 2 ( 10 x + y ) - ( 10 y + x ) = 12
⇒ 19 x - 8 y = 12 ... (2)
Now solve 8(1) + (2) ,
⇒ 8 ( x + y ) + ( 19 x - 8 y ) = 96 + 12
⇒ 8 x + 8 y + 19 x - 8 y = 108
⇒ 27 x = 108
⇒ x = 4
Sub. x value in (1) , we get ,
⇒ y = 12 - 4
⇒ y = 8
Hence the original number is xy = 48