Math, asked by abhishekr920410134, 3 months ago

The sum of two integer is-16.if one of them is 53, find the other​

Answers

Answered by Anonymous
0

Step-by-step explanation:

Let the other number be x

A/q,

x+ 53 = (-16)

=> x= -16-53

=>x = ((-69))

So the number is (-69)(ans)

Answered by SachinGupta01
6

Given : ↴

 \sf \: The  \: sum  \: of  \: two \:  integer \:  is \: -16

 \sf \: One  \: of  \: the \:  number \:  is  \: 53

To Find : ↴

 \sf \: We \:  have  \: to  \: find  \: the  \: another \: number.

So, Let's Start : ↴

 \sf \: Let \:  the \:  another  \: number \:  be \:  x.

 \sf \longrightarrow \:  53  \: +  \: x  \: = \:  -16

 \sf \longrightarrow \:   \: x  \: = \:   \:  -  \: 16  \: -  \: 53

 \sf \longrightarrow \:   \: x  \: = \:   \:  -  \: 69

 \sf \: So,  \: the \:  another \:  number  \:  is -69

________________________

 \sf \: Let's \: Verify \: Our  \: Answer  \:

\sf \longrightarrow \: -16\: = \:+53\: -69

 \sf \: Hence, \: Our \: Answer  \: is \: correct.

________________________

 \sf \: Rules\: Used\:  to\: solve \:this\: question\: are\:

\boxed{\begin{array} {c|c} \sf{ +,- } & \sf{ - } \\ \dfrac{\qquad\qquad}{} & \dfrac{\qquad}{} \\ \sf{-  ,  +} & \sf{ - } \\ \dfrac{\qquad\qquad}{} & \dfrac{\qquad}{} \\ \sf{+,+} & \sf{ + } \\ \dfrac{\qquad\qquad}{} & \dfrac{\qquad  }{} \\ \sf{-,-} & \sf{ + }\end{array}}

 \sf \: Some\: More\: Information\: about\: Integers\: :

 \sf \: Integers\: is\:a\:Latin\: word,\: which \:means\: Whole.

 \sf \:Integer, \: Whole\:-\: valued\:positive\:or\:negative \:number \:or \:0

 \sf \:Examples\: : -67,\: -14, \:34 \:etc.

Similar questions