Math, asked by anithap8344, 11 months ago

the sum of two number 50 and their difference is 18 find the numbers​

Answers

Answered by Anonymous
21

let the numbers be X and Y

given

x + y = 50  -  -  - i\\ x - y = 18 -  - ii

substracting \: ii \: from \: i \\( x  + y )-( x - y) = 50 - 18 \\   2y = 32 \\ y = 16

then x is

50 - y \\  = 50 - 16 \\  = 34

Answered by Brâiñlynêha
8

\huge\mathbb{SOLUTION:-}

Let the two numbers be a and b

\sf\underline{\pink{\:\:\:\:\:\:\:Given:-\:\:\:\:\:\:\:\:\:\:}}

\sf\bullet a+b=50\:\:\:\:\:\:\:\:\:\:(i)\\ \\ \sf\bullet a-b=18\:\:\:\:\:(ii)

  • Now by adding equation (i) and (ii)

\bf\underline{\red{\:\:\:\:\:\:\:A.T.Q:-\:\:\:\:\:\:\:}}

\sf:\implies  (x+y)+(x-y)=50+18\\ \\ \sf:\implies x\cancel{+y}+x\cancel{(-y)}=68\\ \\ \sf:\implies 2x=68\\ \\ \sf:\implies x=\cancel{\dfrac{68}{2}}\\ \\ \sf:\implies x= 34

\sf\bullet {\blue{The\: value\: of \:x \:is \:34 }}

  • Now the value of y

\sf\bullet x+y= 50\\ \sf:\implies \:\:x=34\\  \sf:\implies 34+y=50\\ \sf:\implies y= 50-34\\ \sf:\implies y=16

\boxed{\sf{The\:two\:numbers\:is\:\:34\:and\:16}}

Similar questions