Math, asked by rohankumarsahan6143, 8 months ago

The sum of two numbers is 24 and the sum of their squares is 386,then one number is

Answers

Answered by mysticd
3

 Given \: sum \: of \: two \: numbers \:is \:24.

 Let \: one \: number = x

 Second \: number = ( 24 - x )

/* according to the problem given */

 \blue{ Sum \:of \:the \: squares = 386 }

 \implies x^{2} + ( 24 - x )^{2} = 386

 \implies x^{2} + 24^{2} - 2\times x \times 24 + x^{2} - 386 = 0

 \implies 2x^{2} - 48x + 576 - 386 = 0

 \implies 2x^{2} - 48x + 190 = 0

/* Dividing each number by 2 , we get */

 \implies x^{2} - 24x + 190 = 0

\implies x^{2} -5x - 19x + 95 = 0

 \implies x( x - 5) - 19( x - 5) = 0

 \implies (x-5)(x-19) = 0

 \implies x - 5 = 0 \: Or \: x - 19 = 0

 \implies x =  5 \: Or \: x = 19

Therefore.,

Case 1:

 If \: x = 5 \: then :

 \red{ Required \:two \: numbers } \green {\: ( 5,19) }

Case 2:

 If \: x = 19 \: then :

 \red{ Required \:two \: numbers } \green {\: ( 19,5) }

•••♪

Similar questions