Math, asked by dziizienuomepfhiio, 19 days ago

the sum of two numbers is 6 times their geometry mean . show that numbers are in the ration (3+2√2) : (3-2√2)​

Answers

Answered by mathdude500
42

\large\underline{\sf{Solution-}}

Let assume that x and y are two positive numbers such that x > y and according to statement, sum of these two numbers is 6 times their geometric mean.

So,

\rm \: x + y = 6 \sqrt{xy} \\

can be further rewritten as

\rm \: x + y = 3 \times 2 \sqrt{xy} \\

\rm \: \dfrac{x + y}{2 \sqrt{xy} } = 3

can be further rewritten as

\rm \: \dfrac{x + y}{2 \sqrt{xy} } = \dfrac{3}{1}  \\

On applying Componendo and Dividendo, we get

\rm \: \dfrac{x + y + 2 \sqrt{xy} }{x + y - 2 \sqrt{xy} } = \dfrac{3 + 1}{3 - 1}  \\

\rm \: \dfrac{ {( \sqrt{x} )}^{2}  +  {( \sqrt{y} )}^{2}  + 2 \sqrt{xy} }{ {( \sqrt{x} )}^{2}  +  {( \sqrt{y} )}^{2}  - 2 \sqrt{xy} } = \dfrac{4}{2}  \\

\rm \: \dfrac{ {( \sqrt{x}  +  \sqrt{y})}^{2} }{ {( \sqrt{x}  -  \sqrt{y})}^{2} }  = 2 \\

\rm \: \dfrac{ \sqrt{x}  +  \sqrt{y} }{ \sqrt{x}  -  \sqrt{y} } =  \sqrt{2} \\

can be further rewritten as

\rm \: \dfrac{ \sqrt{x}  +  \sqrt{y} }{ \sqrt{x}  -  \sqrt{y} } = \dfrac{ \sqrt{2} }{1}  \\

On applying Componendo and Dividendo, we get

\rm \: \dfrac{ \sqrt{x}  +  \sqrt{y}  +  \sqrt{x} -  \sqrt{y}  }{ \sqrt{x} +  \sqrt{y} -  \sqrt{x} +  \sqrt{y} } = \dfrac{ \sqrt{2}  + 1}{ \sqrt{2} -  1}  \\

\rm \: \dfrac{2 \sqrt{x}}{2\sqrt{y}} = \dfrac{ \sqrt{2}  + 1}{ \sqrt{2} -  1}  \\

\rm \: \dfrac{\sqrt{x}}{\sqrt{y}} = \dfrac{ \sqrt{2}  + 1}{ \sqrt{2} -  1}  \\

On squaring both sides, we get

\rm \: \dfrac{x}{y}  = \dfrac{ {( \sqrt{2}  + 1)}^{2} }{ {( \sqrt{2}  - 1)}^{2} }  \\

\rm \: \dfrac{x}{y}  = \dfrac{2 + 1 + 2 \sqrt{2} }{2 + 1 - 2 \sqrt{2} }  \\

\rm\implies \:\rm \: \dfrac{x}{y}  = \dfrac{3 + 2 \sqrt{2} }{3- 2 \sqrt{2} }  \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

FORMULA USED

If x and y are two positive real numbers, then geometric mean (GM) is given by

\boxed{\tt{  \: \rm \:  \: GM \:  =  \:  \sqrt{xy} \:  \: }} \\

If a : b :: c : d, then Componendo and Dividendo is

\boxed{\tt{ \rm \:  \:  \: \dfrac{a + b}{a - b}  = \dfrac{c + d}{c - d}  \:  \: }} \\

\boxed{\tt{ \rm \:  \:  {(x + y)}^{2} =  {x}^{2} +  {y}^{2} + 2xy \:  \: }} \\

\boxed{\tt{ \rm \:  \:  {(x  -  y)}^{2} =  {x}^{2} +  {y}^{2}  -  2xy \:  \: }} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

ADDITIONAL INFORMATION

If x and y are two positive real numbers, then Arithmetic Mean (AM) is given by

\boxed{\tt{  \:  \: AM \:  =  \:  \frac{x + y}{2} \:  \: }} \\

If x and y are two positive real numbers, then Harmonic mean (HM) is given by

\boxed{\tt{  \:  \: HM \:  =  \:  \frac{2xy}{x + y} \:  \: }} \\

Relationship between Arithmetic mean, Geometric mean and Harmonic mean.

\boxed{\tt{  \:  \: AM \:  \geqslant  \: GM \:  \geqslant  \: HM \: }} \\

\boxed{\tt{  \:  \:  {GM}^{2} = AM \times HM \:  \: }} \\

\boxed{\tt{  \:  \: AM, \: GM, \: HM \: are \: in \: geometric \: progression \: }} \\

Answered by Anonymous
38

Consider :

Assume that the two numbers can be a and b

We know that,

The geometric mean between a and b is √(a×b).

So ,

➡ Geometric Mean = √ab

Given Condition :

  • The sum of two numbers is 6 times their geometric mean .

According to given condition ,

 \rm \implies  \: a + b = 6 \sqrt{ab} \:  \:  \:  \:  \:  \: (1)\\

By squaring both the sides we get ,

 \rm \implies \: (a +  {b)}^{2}  = 36ab \\

Also,

 \rm \implies(a -  {b)}^{2}  =  (a  +  {b)}^{2}  - 4ab = 36ab - 4ab = 32ab

So,

 \rm \implies \: a - b =  (\sqrt{32} )( \sqrt{ab} )

 \rm \implies \: a - b = 4 \sqrt{2} . \sqrt{ab}  \:  \: (2)\\

By solving equation (1) and (2) we get ,

  \rm \implies \:  \dfrac{a + b}{a - b} = \dfrac{6 \:  \cancel{ \sqrt{ab}} }{4 \sqrt{2} \: . \: \cancel{ \sqrt{ab}}}\\

 \rm \implies \:  \dfrac{a + b}{a - b}  =  \dfrac{3}{2 \sqrt{2} }

By applying componendno and dividendo we get ,

 \rm \implies \:  \dfrac{(a + b) + (a - b)}{(a  + b) - (a - b)}  =  \dfrac{3 + 2 \sqrt{2} }{3 - 2 \sqrt{2} }

\rm \implies  \:  \dfrac{2a}{2b}   =  \dfrac{3 + 2 \sqrt{2} }{3 - 2 \sqrt{2} }\\

\rm \implies  \:  \dfrac{a}{b}   =  \dfrac{3 + 2 \sqrt{2} }{3 - 2 \sqrt{2} }\\

 \rm \:  \therefore \: Thus  \: required  \: Ratio  \: is \: (3 + 2 \sqrt{2}) : (3 -2 \sqrt{2})

Similar questions