Math, asked by ayhd126, 4 months ago

The sum of two rational numbers is 4/9 if one number is -3/11 find the other

Answers

Answered by Anonymous
100

Question ::-

The sum of two rational numbers is 4/9 if one number is -3/11 find the other ?

Given ::-

  • Sum of two rational numbers is  \dfrac{4}{9}

  • One of them is  \dfrac{-3}{11}

To find ::-

  • Another rational number.

Solution ::-

Let the other number be g

➠  \dfrac{-3}{11} + g =  \dfrac{4}{9}

➠ g =  \dfrac{4}{9} -  (\dfrac{-3}{11})

➠ g =  \dfrac{44 - (-27)}{99}

➠ g =  \dfrac{44 + 27)}{99}

➠ g =  \dfrac{44 - (-27)}{99}

➠ g =  \dfrac{71}{99}

___________

Let's varify it ::-

=  \dfrac{-3}{11} +  \dfrac{71}{99} =  \dfrac{4}{9}

=  \dfrac{-27 + 71}{99} =  \dfrac{4}{9}

=  \dfrac{44}{99} =  \dfrac{4}{9}

=  \dfrac{\cancel{44}}{\cancel{99}}

=  \dfrac{4}{9}

Hence , L.H.S = R.H.S

Answered by ItzurMajnu
58

\huge\mathtt\red{ꪖꪀs᭙ᴇʀ}

Given ::-

Sum of two rational numbers is \dfrac{4}{9}94

One of them is \dfrac{-3}{11}11−3

Solution ::-

Let the other number be g

➠ \dfrac{-3}{11}11−3 + g = \dfrac{4}{9}94

 g = \dfrac{4}{9}94 - (\dfrac{-3}{11})(11−3)

➠ g = \dfrac{44 - (-27)}{99}9944−(−27)

 g = \dfrac{44 + 27)}{99}9944+27)

➠ g = \dfrac{44 - (-27)}{99}9944−(−27)

➠ g = \dfrac{71}{99}9971

Verification:-

−3 + \dfrac{71}{99}9971 = \dfrac{4}{9}94

= \dfrac{-27 + 71}{99}99−27+71 = \dfrac{4}{9}94

= \dfrac{44}{99}9944 = \dfrac{4}{9}94

= \dfrac{\cancel{44}}{\cancel{99}}9944

= \dfrac{4}{9}94

Hence , L.H.S = R.H.S

Similar questions