the sum of two unmbers is 18 ,the sum of their reciprocal is 1/4.find the number.
vandanarajput:
....
Answers
Answered by
2
let two numbers be x and y,their reciprocals be 1/x and 1/y
x+y=18
1/x+1/y=1/4
y+x/xy=1/4
18/xy=1/4
so xy=72 is eq2
from x+y=18 we get y=18-x
sub in eq 2
x(18-x)=72
18x-x^2=72
x^2-18x+72=0
x^2-6x-12x+72=0
x(x-6)-12(x-6)=0
so x=6 or 12
if x=6,y=12
so numbers are 6,12.
hope it helps
please mark it as brainliest
x+y=18
1/x+1/y=1/4
y+x/xy=1/4
18/xy=1/4
so xy=72 is eq2
from x+y=18 we get y=18-x
sub in eq 2
x(18-x)=72
18x-x^2=72
x^2-18x+72=0
x^2-6x-12x+72=0
x(x-6)-12(x-6)=0
so x=6 or 12
if x=6,y=12
so numbers are 6,12.
hope it helps
please mark it as brainliest
Answered by
3
let the two numers be x and y
x+y=18
1/x+1/y=1/4
x+y/xy=1/4
4x+4y=xy
4(x+y)=xy
we know x+y =18-----eqn 1
xy=72------eqn 2
x+y=18
x= 18 -y substitute in eqn 2
(18-y)*y= 72
18y-y²=72
y²-18+72
y² - 12xy- 6y - 72 = 0
y(y - 12) - 6(y - 12) = 0
(y - 6) (y - 12) = 0
y = 6 and y= 12
x+y =18
substitute y value as 6
thn x=12
substite y value as 12
thn x=6
x+y=18
1/x+1/y=1/4
x+y/xy=1/4
4x+4y=xy
4(x+y)=xy
we know x+y =18-----eqn 1
xy=72------eqn 2
x+y=18
x= 18 -y substitute in eqn 2
(18-y)*y= 72
18y-y²=72
y²-18+72
y² - 12xy- 6y - 72 = 0
y(y - 12) - 6(y - 12) = 0
(y - 6) (y - 12) = 0
y = 6 and y= 12
x+y =18
substitute y value as 6
thn x=12
substite y value as 12
thn x=6
Similar questions