Math, asked by ronii44, 1 year ago

the sum upto the infinity of the series 4/7-5/49+4/343+.......is


brunoconti: not clear. we need more terms
ronii44: okk
ronii44: the terms are 4/7-5/49+4/343-5/2401+........is
brunoconti: ok. thks

Answers

Answered by brunoconti
17

Answer:

Step-by-step explanation:

Attachments:

ronii44: thankuuuu
brunoconti: anytime
ronii44: what
Answered by SmritiSami
0

Given,

f(x) = \frac{4}{7} - \frac{5}{49} + \frac{4}{343} - . . . .

To find,

Sum of f(x) unto infinity.

Solution,

The sum of the function f(x) up to infinity is \frac{23}{48}.

We can simply solve the mathematical problem by the following process.

It is given that,

f(x) = \frac{4}{7} - \frac{5}{49} + \frac{4}{343} - . . . .

     = \frac{4}{7} - \frac{5}{7^2} + \frac{4}{7^3} - . . . .

     = (\frac{4}{7}+\frac{4}{7^3}  + \frac{4}{7^5} ...) - (\frac{5}{7^2} + \frac{5}{7^4}+...)

     = 4( \frac{1}{7} + \frac{1}{7^3}+..) - 5( \frac{1}{7^2}+\frac{1}{7^4}   +...)

     = 4 ( \frac{\frac{1}{7} }{1-(\frac{1}{7})^2 } )-5 (\frac{(\frac{1}{7})^2 }{1 - (\frac{1}{7})^2 } )

     = 4 (\frac{7}{48} )-5(\frac{1}{48} )

     = \frac{28}{48}-\frac{5}{48}

     = \frac{23}{48}

Thus, the sum of the function f(x) up to infinity is \frac{23}{48}.

Similar questions