Math, asked by dhaliwal45, 9 months ago

The surface area of a solid cylinder is 462cmsquare and the curved surface area is one third of the total surface area . Find the volume of the cylinder.

Answers

Answered by amansharma264
27

  \bf \to \:  \green{{ \underline{given \div }}}

 \sf \to \: the \: surface \: area \: of \: a \: solid \: cylinder \:  = 462cm {}^{2} \\  \\  \sf \to \: the \: curved \: surface \: area \: is \: one \: -  third  \: the \: total \: surface \: area

 \bf \to \:  \orange{{ \underline{to \: find \div }}}

 \sf \to \:  \blue{{ \underline{the \: volume \: of \: cylinder}}}

 \bf \to \: { \underline{solution \div }}

 \sf \to \: total \: surface \: area \: of \: cylinder \:  = 462cm. \\  \\  \sf \to \: curved \: surface \: area \:  =  \dfrac{1}{3}  \times (total \: surface \: area) \\  \\  \sf \to \: total \: surface \: area \:  = \: 2\pi \: r \: (h + r)  \\  \\  \sf \to \: toal \: surface \: area \:  = 2\pi \: rh \:  + 2\pi \:  {r}^{2}  = c.s.a \:  + 2\pi \:  {r}^{2}  \\  \\  \sf \to \: t.s.a \:  =  \dfrac{t.s.a}{3}  + 2\pi \: r {}^{2}  \\  \\  \sf \to \: t.s.a \:  -  \:  \dfrac{t.s.a}{3}  = 2\pi \: r {}^{2}  \\  \\  \sf \to \:  \dfrac{2t.s.a}{3}  = 2\pi \: r {}^{2}  \\  \\  \sf \to \: t.s.a \:  = 3\pi \: r {}^{2}  \\  \\  \sf \to \: 462 \:  = 3 \times  \dfrac{22}{7}  \times  {r}^{2}  \\  \\  \sf \to \: r \:  = 7cm \\  \\  \sf \to \: c.s.a \:  =  \dfrac{t.s.a}{3} \\  \\  \sf \to \: 2\pi \: rh \:  =  \dfrac{462}{3}  \\  \\  \sf \to \: 2\pi \: rh \:  = 154 \\  \\  \sf \to \: 2  \times \dfrac{22}{7}   \times 7 \times h \:  = 154 \\  \\  \sf \to \:  h \:  = \dfrac{7}{2} cm \\  \\  \sf \to \: volume \: of \: cylinder \:  = \pi \:  {r}^{2} h \\  \\  \sf \to \:  \dfrac{22}{7} \times 7 \times 7 \times  \dfrac{7}{2}   = 539 {cm}^{3}  \\  \\  \sf \to \orange{{ \underline{volume \: of \: cylinder \:  = 539 {cm}^{3} }}}

Answered by Anonymous
15

GIVEN:-

Total surface area of cylinder = 462cm^2

FIND:-

VOLUME OF CYLINDER ?

SOLUTION:-

we know,

Total  \: surface  \: area  \: of  \: given  \: cylinder  \: is = 462cm^2

Curved \:  surface \:  area = \frac{1}{3}\times total

surface \: area =  \frac{1}{3}  \times 462 = 154 {cm}^{2}

now, \: total \: surface \: area  -  curved \: surface \: area

 = 2 \pi rh + 2 \pi {r}^{2}  - 2 \pi rh  \\ =  > 462 - 154 = 2 \pi {r}^{2}

 =  > 308 = 2 \times \frac{22}{7}  \times  {r}^{2}

 =  >  {r}^{2}  =  \frac{308 \times 7}{44}  = 49

r = 7cm

now,  \: curved  \: surface  \: area =  {154cm}^{2}

 =  > 2 \pi rh = 154

 =  > 2 \times  \frac{22}{7}  \times 7  \times h = 154

 =  > h =  \frac{154}{44}  = 3.5cm

Volume  \: of  \: cylinder =  \pi {r}^{2} h

 =  \frac{22}{7}  \times  {7}^{2}  \times 3.5

 =  \frac{22}{7}  \times 49 \times 3.5 = 539 {cm}^{3}

so, \: volume \: of \: cylinder \: is \boxed{ {539cm}^{3} }

Similar questions