Math, asked by kapoorvardaan3, 10 months ago

· The surface areas of two spheres are in the ratio 1: 4. Find the ratio of
their volumes.

Answers

Answered by BrainlyRaaz
15

Given :

  • The surface areas of two spheres are in the ratio 1: 4.

To find :

  • The ratio of their volumes =?

Step-by-step explanation :

We know that,

Area of sphere = 4πr²

And

Volume of sphere = (4/3)πr³

Now,

Let the radii of two spheres be r and R respectively.

According to the question :

➮ (4 × π × r²)/(4 × π × R²) = 1/4

➮ (r/R)² = (1/2)²

➮ r/R = 1/2

As We know that,

Volume of sphere = (4/3)πr³

Now, the ratio of their volumes is

= ((4/3) × π × r³)/((4/3)× π × R³)

= (r/R)³

On putting the value of r/R = 1/2 we get,

= (1/2)³

= 1/8

Therefore, the ratio of their volumes = 1:8

Answered by TheSentinel
19

\purple{\underline{\underline{\pink{\boxed{\boxed{\red{\star{\sf Question:}}}}}}}} \\ \\

\rm{The \ surface \ areas \ of \ two \ spheres \ are \ in}

\rm{the \ ratio \ 1:4. \ Find \ the \ ratio \  of \ their}

\rm{volumes}

_________________________________________

\purple{\underline{\underline{\orange{\boxed{\boxed{\green{\star{\sf Answer:}}}}}}}} \\ \\

\rm{\blue{\boxed{\red{ ratio \  of \ volume \ of \   two \ spheres \  is \  1 : 8}}}}

_________________________________________

\sf\large\underline\pink{Given:} \\ \\

\rm{The \ surface \ areas \ of \ two \ spheres }

\rm{are \ in \ the \ ratio \ 1:4.}

_________________________________________

\sf\large\underline\blue{To \ Find} \\ \\

\rm{ratio \  of \ volume \ of \   two \ spheres }

_________________________________________

\purple{\underline{\underline{\red{\boxed{\boxed{\blue{\star{\sf Solution:}}}}}}}} \\ \\

\rm{We \ are \ given ,}

\rm{The \ surface \ areas \ of \ two \ spheres }

\rm{are \ in \ the \ ratio \ 1:4.}

\rm{Let \ r_1 \ and \ r_2 \ be \ the \ raddii \ of }

\rm{the \ two \ spheres} \\

\rm\implies{r_1:r_2 \ = \ 1:4} \\ \\

\rm{Now, \  surface \  area  \ of \  the \  spheres }

\rm{are \ 4 \pi r_1 \  and \ 4 \pi r_2} \\ \\

\rm\implies{ {\frac{4 \pi r_1}{4 \pi r_2} }^{2} \ = \ \frac{1}{4}} \\ \\

\rm\implies{\frac{{r_1}^2}{{r_2}^{2}} \  = \ \frac{1}{4}} \\ \\

\rm\implies{\frac{r_1}{r_2} \ = \ \sqrt{ \frac{1}{4}} } \\ \\

\rm\implies{\red{\boxed{\green{ \frac{r_1}{r_2} \ = \ \frac{1}{2}} }}} \\ \\

\rm{Now, \ volume \ of \ the \ spheres \  are}

\rm\implies{( \frac{4}{3}) \pi {r_1}^{3} \ and ( \frac{4}{3}) \pi {r_2}^{3}} \\ \\

\rm\implies{Ratio \ of \ volumes : \ \frac{ ( \frac{4}{3}) \pi {r_1}^{3}}{ (\frac{4}{3}) \pi {r_1}^{3}}} \\ \\

\rm\implies{Ratio \ of \ volumes : \ \frac{{r_1}^{3}}{{r_2}^{3}}} \\ \\

\rm\implies{Ratio \ of \ volumes : \ {( \frac{ r_1}{ r_2} ) }^{3}} \\ \\

\rm\implies{Ratio \ of \ volumes : \ { ( \frac{ 1}{ 2}) }^{3} } \\ \\

\rm\implies{Ratio \ of \ volumes : \ { \frac{1}{8}}} \\ \\

\rm\therefore{\blue{\boxed{\red{ ratio \  of \ volume \ of \   two \ spheres \  is \  1 : 8}}}}

_________________________________________

\rm\orange{Hope \ it \ helps \ :))}


BrainlyRaaz: Perfect ✔️
Similar questions