Physics, asked by rishiraj915, 10 months ago

The surface of a hill is inclined at an angle a to the horizontal. A stone is thrown from the top of the hill at an angle b with the vertical with a velocity v. how far from the top will the stone strike the surface of the hill?

pls answer asap. ​

Attachments:

Answers

Answered by Rajshuklakld
5

Solution:-

Horizontal \: component \: of \: velocity = vcos∅ \\ if \: u \: will \:visualize \: from \: figure \\ u \: can \: understand \: that \\ ∅ = 180 - (90 -  \alpha  +  \beta ) = 90 - ( \alpha  -  \beta ) \\ so \: horizontal \: component = vcos(90 +  \alpha  -  \beta ) \\ vsin( \alpha  -  \beta ) \\ this \: will \: be \: the \: velocity \: along \: x \\ similarly \: velocity \: along \: y = vcos( \alpha  -  \beta ) \\ now \: for \: x \: axis \\ s = vsin (  \alpha  -   \beta  )t -  \frac{1}{2}gsin \alpha  {t}^{2}......i)  \\ for \: y \: axis \\ as \: the \: stone \: will \: again \: fall \: back \: on \: x - axis \\ so \: displacement \: will \: be \: 0 \: along \: y \\ 0 = vcos( \alpha  -  \beta ) \times t -  \frac{1}{2}gcos \alpha  {t}^{2}  \\ vcos( \alpha  -  \beta )t =  \frac{1}{2} gcos \alpha  {t}^{2}  \\ t =  \frac{2vcos( \alpha  -  \beta )}{gcos \alpha }  \\ now \: putting \: this \: value \: of \: t \: in \: i) \: we \: get \\ s =  \frac{2vcos( \alpha  -  \beta ) \times vsin( \alpha  -  \beta )}{gcos \alpha }   +  \frac{1 \times gsin \alpha \times 4 {v}^{2}  {cos}^{2}( \alpha  -  \beta ) }{ {g}^{2}  {cos}^{2}  \alpha }

s={2v^2cos(beta-alpha)sinB}/gcos^2a

Note:-here a=∅(taken)

Attachments:
Answered by c9a019imonpatra
0

Answer:

Explanation:

grab a look at the attachments

Attachments:
Similar questions