Math, asked by hetviviradiya6112, 11 months ago

The tables represent the functions f(x) and g(x). A table showing g(x) equals 2 x plus 15 with 2 columns and 7 rows. The first column, x, has the entries, negative 15, negative 12, negative 9, negative 6, negative 3, 0. The second column, g(x), has the entries, negative 15, blank, blank, blank, blank, 15. Which input value produces the same output value for the two functions? x = –12 x = –9 x = –6 x = –3

Answers

Answered by Agastya0606
1

Given: The function f(x)  = 2x / 3  + 7

To find: The value in the blanks?

Solution:

  • So the table given is as follows:

              x        -15      -12      -9      -6      -3       0

             f(x)       -3       __      __     __     __       7

  • So we have to fill in these blanks.
  • Now we have given the function as:

          f(x)  = 2x / 3  + 7

  • So putting -12 in f(x), we get:

         f(x)  = 2(-12) / 3  + 7

         f(x)  = -8 + 7

        f(x)  = -1

  • putting -9 in f(x), we get:

         f(x)  = 2(-9) / 3  + 7

         f(x)  = -6 + 7

        f(x)  = 1

  • putting -6 in f(x), we get:

         f(x)  = 2(-6) / 3  + 7

         f(x)  = -4 + 7

         f(x)  = 3

  • putting -3 in f(x), we get:

         f(x)  = 2(-3) / 3  + 7

         f(x)  = -2 + 7

        f(x)  = 5

Answer:

     So the value at blanks is:

               x         -15      -12      -9      -6      -3       0

             f(x)       -3         -1         1       3       5       7

Similar questions