Physics, asked by dharani1786, 11 months ago

The temperature and the relative humidity are 300 K and 20% in a room of volume 50 m3. The floor is washed with water, 500 g of water sticking on the floor. Assuming no communication with the surrounding, find the relative humidity when the floor dries. The changes in temperature and pressure may be neglected. Saturation vapour pressure at 300 K = 3.3 kPa.

Answers

Answered by AditiHegde
0

The relative humidity when the floor dries is 62%.

  • Given,
  • T=300K
  • RH=20%
  • V=50m^3
  • m=500g
  • SVP=3300Pa
  • RH=20%=\frac{20}{100}
  • \dfrac{VP}{SVP}=0.2
  • ∴VP=0.2×3300=660Pa
  • P_1=660Pa
  • for the evaporated water, the partial pressure is given by,
  • P_2=\dfrac{m}{M}\dfrac{RT}{V}
  • here, M=18 g for water
  • P_2=\dfrac{500}{18}\dfrac{8.314*300}{50}
  • P_2=1385Pa
  • Total pressure,
  • P=P_1+P_2
  • =660+1385=2045Pa
  • Now,
  • RH=\dfrac{P}{SPV} *100\\\\=\dfrac{2045}{3300} *100%\\\\\\\\=61.9%

Answered by bhuvna789456
0

Explanation:

Given data in the question  

Step 1 :

Mass for water(M)=18 g  

V=50 \mathrm{m}^{3}

m=500 g

T=300 K

Saturated vapour pressure=3300 P a

RH=20 \%

(Saturated vapour pressure)/(vapour pressure)  =\frac{20}{100}=0.2  

vapour pressure=P_{1}=0.2 \times 3300=660 P a

Step 2:

Partial pressure is given by P_{2} for evaporated water

P_{2} V=\frac{m}{M} R T

P_{2}=\frac{500}{18 \times 50} \times 8.31 \times 300

P_{2}=\frac{500}{900} \times 2493

P_{2}=\frac{5}{9} \times 2493

P_{2}=0.55 \times 2493

P_{2}=1385 \mathrm{Pa}

Step 3:

net pressure, P=P_{1}+P_{2}=1385+660=2045 P a

RH ( Relative humidity )=P/(Saturated vapour pressure)×100  

=\frac{2045}{3300} \times 100 \%

=61.9 \approx 62 \%

Similar questions