Math, asked by Ayushrajdav, 1 year ago

the thickness of a hollow metallic cylinder is 2 centimetre it is 35 cm long and its inner radius 12 cm find the volume of metal required to make the cylinder assuming it's open at either end

Answers

Answered by Battleangel
3

Answer:

 \huge \bold{5720 {cm}^{3} }

Step-by-step explanation:

  \blue{ \sf{ \underline{ \pink{ \underline{ \purple{given}}}}}}

thickness of hollow cylinder is 2 cm

length=35cm

Inner radius=12cm

outer radius=12+2=14cm

 \huge \orange{ \fbox{ \fbox{ \red{ \mathfrak{solution}}}}}

volume volume of wood required to make the cylinder = volume of whole cylinder - volume of hollow cylinder.

 \pi \times  {r}^{2}  \times h -  \pi \times  {r}^{2} \times h

 =    \:  \: \pi( {r}^{2}  -  {r}^{2} )h

 =  \frac{22}{7} ( {14}^{2}  -  {12}^{2} )35

 =  \frac{22}{7} (196 - 144)35

 =  \frac{22}{ \cancel7}  \times 52 \times  \cancel35

 = 22 \times 52 \times 5

 = 5720 {cm}^{3}

 \bf{hope \: this \: helps \: you }

Answered by Anonymous
97

\large{\underline{\sf{\red{Required\:Answer:}}}}

  • \large\boxed{\underline{{\sf {5720 \: cm}^{2}}}}

Given:-

  • Inner radius of cylinder r = 12 cm.

  • Thickness = 2 cm.

  • Height = 35 cm.

To Find:-

  • Other radius.

  • Volume of metal required to make cylinder.

Solution:-

  • Other radius R = {\sf{12  +  2 = 14 \: cm }}

  • It is a hollow cylinder.

\large\boxed{\underline{\pink{\sf Volume \: of \: metal \: required \: to \: make \: cylinder = outer \: volume - inner \: volume}}}

\purple{\implies\:\:} {\sf{ \pi R^{2} h - \pi r ^{2} h }}

\purple{\implies\:\:} {\sf{\dfrac{22}{7}  \times 35 \times (14 ^{2}   - 12 ^{2}) }}

\purple{\implies\:\:} {\sf{{5720 \: cm}^{2} }}

✤ Hence, the volume of metal required to make the cylinder, assuming it is open, at either end = {\sf{  {5720 \: cm}^{2} }}

Similar questions