Math, asked by gautamgilhotra, 1 year ago

the thickness of a hollow metallic cylinder is 2 cm It is 35 cm long and its inner radius is 12 cm find the volume of metal required to make the cylinder asuming it is open at either end

Answers

Answered by saniyaarora2003
5

Answer:

5720 cm^3

Step-by-step explanation:

are of metal used = outer area-inner area

                             =  \pi h (R^2-r^2)

                              = 22/7 x 35 x (14^2 - 12^2)  

                               =22 x 5 x (196-144)

                               =110 x 52

                                =5720 cm^3

Answered by Battleangel
3

Answer:

 \huge \bold{5720 {cm}^{3} }

Step-by-step explanation:

  \blue{ \sf{ \underline{ \pink{ \underline{ \purple{given}}}}}}

thickness of hollow cylinder is 2 cm

length=35cm

Inner radius=12cm

outer radius=12+2=14cm

 \huge \orange{ \fbox{ \fbox{ \red{ \mathfrak{solution}}}}}

volume volume of wood required to make the cylinder = volume of whole cylinder - volume of hollow cylinder.

 \pi \times  {r}^{2}  \times h -  \pi \times  {r}^{2} \times h

 =    \:  \: \pi( {r}^{2}  -  {r}^{2} )h

 =  \frac{22}{7} ( {14}^{2}  -  {12}^{2} )35

 =  \frac{22}{7} (196 - 144)35

 =  \frac{22}{ \cancel7}  \times 52 \times  \cancel35

 = 22 \times 52 \times 5

 = 5720 {cm}^{3}

 \bf{hope \: this \: helps \: you }

Similar questions