Math, asked by Nasra48, 1 year ago

The three adjacent faces of cuboid are A1,A2and A1.If volume is V then prove that V=√A1 A2 A3

Answers

Answered by shashankavsthi
23

let \: the \: length \: width \: and \: height \: be \: l \: b \: and \: h \: respectively \\
A1=l×b
A2=b×h
A3=h×l

volume of cuboid=lbh

l =  \frac{a1}{b}  \\ b =  \frac{a2}{h}  \\ h =  \frac{a3}{l}  \\ put \: value \: of \: l \: b \: and \: h \: in \: volume \\  \\ v =  \frac{a1}{b}  \times  \frac{a2}{h}  \times  \frac{a3}{l}  \\ v \times (lbh) = a1 \times a2 \times a3  \\ {v}^{2}  = a1 \times a2 \times a3 \\ v =  \sqrt{a1 \times a2 \times a3}


Hope it will help you!!
Similar questions