The time period of an earth satellite in circular orbit is independent of(a) both the mass and radius of the orbit(b) radius of its orbit(c) the mass of the satellite(d) neither the mass of the satellite nor the radius of its orbit.
Answers
Answered by
5
As we learnt in
For a satellite , Centripetal force = Gravitational force
\therefore \; \; mR\omega ^{2}=\frac{GmM_{e}}{R^{2}}\; \; \; \; \; \; where\; R=r_{e}+h
or\; \; \; \omega =\sqrt{\frac{GM_{e}}{R^{3}}}=\sqrt{\frac{GM_{e}}{(r_{e}+h)^{3}}}
\therefore \; \; \; T=\frac{2\pi }{\omega }=2\pi \sqrt{\frac{(r_{e}+h)^{3}}{GM_{e}}}
\therefore \; \; T\; is \; independent \; of \; mass\; (m)\; of\; satellite.
mw^2R = \frac{G_{e}m}{R^3} = \sqrt{\frac{Gm_{e}}{\left ( re+h \right )^3}}mw^2R = \frac{G_{e}m}{R^3} where R = R_{r} h
w = \sqrt{\frac{Gm_{e}}{r^3}} = \sqrt{\frac{Gm_{e}}{\left ( re+h \right )^3}}
T = \frac{2_{x}}{w} = 2\times \frac{\sqrt{\left ( r_{e} +h \right )}}{Gm_{e}}
\therefore T\ is\ independent\ of\ mass\ of\ Satelite
Similar questions