Math, asked by vridhikhosla9578, 2 months ago

The two adjacent angles of a quadrilateral are 67° & 105°. The other two adjacent angles are equal. what is the measure of each of these equal angles?

Answers

Answered by Anonymous
24

Given :-

Two adjacent angles of a quadrilateral :

  • 1st angle = 67°
  • 2nd angle = 105°

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

To Find :-

Find other two adjacent angle :

  • 3rd angle = ?
  • 4th angle = ?

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Solution :-

We know that :

Sum of all adjacent angles of a quadrilateral is 360°.

Let :

The two equal angles be x°.

Solving starts :

{\twoheadrightarrow{\sf{67° + 105° + x + x = 360°}}}

{\twoheadrightarrow{\sf{172° + 2x = 360°}}}

{\twoheadrightarrow{\sf{2x = 360° - 172°}}}

{\twoheadrightarrow{\sf{2x = 188°}}}

{\twoheadrightarrow{\sf{X = {\cancel\frac{188}{2}  }}}}

{\large{\blue{:{\longmapsto{\pink{\underline{\boxed{\mathbb{\bf{X = 94°  }}}}}}}}}}</p><p>

Hence :

{\green{➳{\red{\bf{Angle \:  3 = X = 94°}}}}}

{\green{➳{\red{\bf{Angle  \: 4 = X = 94°}}}}}

For Verification :

{\orange{\leadsto{\sf{Angle 1 + Angle 2 + Angle 3 + Angle 4 = 360°}}}}

{\orange{\leadsto{\sf{67° + 105° + 94° + 94° = 360°}}}}

{\purple{\bf{360° = 360°}}}

{\purple{\bf{LHS = RHS}}}

 \:  \:  \:  \:  \:  \:  \:  \:  \: {\orange{\underbrace{\overbrace{\green{\mathfrak{Hence , verified}}}}}}

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Similar questions