Math, asked by pawan5329, 1 year ago

The two angles of a quadrilateral are 90° each, and the other two angles are such that one of them
is twice the other. Find the angles.​

Answers

Answered by aadhurshini
33

Answer:

Angle sum of quadrilateral = 360

Two angles = 90° and 90°

let other one angle be x

fourth angle = 2x

by the given condition:

90° + 90° + x + 2x = 360°

180° + 3x = 360°

3x = 360° - 180° = 180°

x = 180°/3 = 60°

one angle = 60°

fourth angle = 120°

hope this helps!

mark it branliest if this helped!!

Answered by BrainlyConqueror0901
45

</p><p>{\bold{\underline{\underline{Answer:}}}}

</p><p>{\bold{\therefore \angle C=60\degree}}

</p><p>{\bold{\therefore \angle D=120\degree}}

{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \bold{Let \: Quadrilateral \: be \: ABCD : } \\  \\  \underline \bold{Given : } \\  \implies  \angle A = 90 \degree \\  \\  \implies  \angle B = 90 \degree \\  \\   \underline \bold{To \: Find : } \\  \implies  \angle C = ? \\  \\ \implies  \angle D= ?

• According to given question :

 \bold{Let  \:  \angle C= x : }  \\   \:  \:  \:  \:  \:  \: \bold{  \angle D= 2x} \\   \\  \bold{Using \: property \: of \: Quadrilateral : } \\  \implies  \angle A + \angle B + \angle C+ \angle D= 360 \degree \\  \\  \implies 90 + 90 + x + 2x = 360 \\  \\  \implies 180 + 3x = 360 \\  \\  \implies 3x = 360 - 180 \\  \\  \implies 3x = 180 \\  \\  \implies x   = \frac{\cancel{180}}{\cancel3}  \\  \\    \bold{\implies x = 60 \degree} \\  \\   \bold{ \therefore\angle C= x = 60 \degree} \\  \bold{ \therefore\angle D= 2x = 120 \degree}

Similar questions