Physics, asked by Dhananchakma3089, 9 months ago

The ultimate tensile strength of a circular rod is 400 MPa and the elongation up to maximum load is 35%. If the max. load reached is 220 KN. Then the initial rod diameter is

Answers

Answered by madeducators4
1

Given :

The ultimate tensile strength of the  rod  =  400 MPa

The elongation up to maximum load  = 35%

To Find :

If the maximum load reached is 220 KN , then the initial diameter of rod = ?

Solution :

Since we know that :

Pressure = \frac{force}{area}

So, 400 MPa = \frac{220 KN}{A}     ( A is cross sectional area )

Or, 400 = \frac{220}{\pi R^2}

Or, R = \sqrt{\frac{220 \times 10^3}{400 \times 3.14 \times 10^6}}

So, R = 0.012 m

Now increase in length :

l' = l + \frac{35}{100}l               ( it is given that length increase by 35% )

Or, l' = \frac{135l}{100}

Or, l' = \frac{27l}{20}

Now , since volume remains same , so :

\pi (r')^2 l' = \pi r^2 l    ( r' is final radius and r is initial radius )

Or, (r')^2 \frac{27}{20}l = r^2l

Or, r' = \sqrt {\frac{20}{27}}r

Or, r = \sqrt {\frac{27}{20}}r'

        =\sqrt{1.35} R

        =1.16 R

        =1.16 \times 0.012

        = 0.019 m

So initial rod diameter =2 \times r

                                     =2 \times 0.019

                                     = 0.038 m

                                     = 3.8 cm

Hence , the initial diameter of rod is 3.8  cm .

Similar questions