the upper part of the tree broken over by wind makes an angle of 30° with the ground and distance of the root from the point where the top touches the ground is 25m what was the height of tree
Answers
Answered by
0

Sol. seg AB represents the height of the tree
The tree breaks at point D
∴ seg AD is the broken part of tree which then takes the position of DC
∴ AD = DC
m∠ DCB = 30º
BC = 30 m
In right angled ∆DBC,
tan 30º = side opposite to angle 30º/adjacent side of 30º
∴ tan 30º = BD/BC
∴ 1/√3 = BD/30
∴ BD = 30/√3
∴ BD = (30/√3)×(√3/√3)
∴ BD = 10√3 m
cos 300 = adjacent side of angle 300/Hypotenuse
∴ cos 300 = BC/DC
∴ cos 300 = 30/DC
∴ √3/2 = 30/DC
∴ DC = (30×2)/√3
∴ DC = (60/√3)×(√3/√3)
∴ DC = 20√3 m
AD = DC = 20 √3 m
AB = AD + DB [∵ A - D - B]
∴ AB = 20 3 + 10 3
∴ AB = 30 3 m
∴ AB = 30 × 1.73
∴ AB = 51.9 m
∴ The height of tree is 51.9 m
Sol. seg AB represents the height of the tree
The tree breaks at point D
∴ seg AD is the broken part of tree which then takes the position of DC
∴ AD = DC
m∠ DCB = 30º
BC = 30 m
In right angled ∆DBC,
tan 30º = side opposite to angle 30º/adjacent side of 30º
∴ tan 30º = BD/BC
∴ 1/√3 = BD/30
∴ BD = 30/√3
∴ BD = (30/√3)×(√3/√3)
∴ BD = 10√3 m
cos 300 = adjacent side of angle 300/Hypotenuse
∴ cos 300 = BC/DC
∴ cos 300 = 30/DC
∴ √3/2 = 30/DC
∴ DC = (30×2)/√3
∴ DC = (60/√3)×(√3/√3)
∴ DC = 20√3 m
AD = DC = 20 √3 m
AB = AD + DB [∵ A - D - B]
∴ AB = 20 3 + 10 3
∴ AB = 30 3 m
∴ AB = 30 × 1.73
∴ AB = 51.9 m
∴ The height of tree is 51.9 m
Similar questions
Science,
7 months ago
Science,
7 months ago
Math,
1 year ago
Social Sciences,
1 year ago
Math,
1 year ago