Math, asked by AASHU1234, 1 year ago

the value of 1 / 2 + root 7 + 1 / root 7 + root 10 + ... + 1 / root 28 + root 31 is

Answers

Answered by InesWalston
9

Answer-

\frac{1}{2+\sqrt{7}} +\frac{1}{\sqrt{7}+\sqrt{10}}+......+\frac{1}{\sqrt{28}+\sqrt{31}}=\frac{\sqrt{31}-2}{3}

Solution-

Given,

=\frac{1}{2+\sqrt{7}} +\frac{1}{\sqrt{7}+\sqrt{10}}+......+\frac{1}{\sqrt{28}+\sqrt{31}}\\\\=\frac{1}{\sqrt{4}+\sqrt{7}} +\frac{1}{\sqrt{7}+\sqrt{10}}+......+\frac{1}{\sqrt{28}+\sqrt{31}}

Multiplying conjugates in each terms,

=\frac{(\sqrt{4}-\sqrt{7})}{(\sqrt{4}+\sqrt{7})(\sqrt{4}-\sqrt{7})} +\frac{(\sqrt{7}-\sqrt{10})}{(\sqrt{7}+\sqrt{10})(\sqrt{7}-\sqrt{10})}+......+\frac{(\sqrt{28}-\sqrt{31})}{(\sqrt{28}+\sqrt{31})(\sqrt{28}-\sqrt{31})}

=\frac{(\sqrt{4}-\sqrt{7})}{(\sqrt{4})^2-(\sqrt{7})^2} +\frac{(\sqrt{7}-\sqrt{10})}{(\sqrt{7})^2-(\sqrt{10})^2}+......+\frac{(\sqrt{28}-\sqrt{31})}{(\sqrt{28})^2-(\sqrt{31})^2}

=\frac{(\sqrt{4}-\sqrt{7})}{4-7} +\frac{(\sqrt{7}-\sqrt{10})}{7-10}+......+\frac{(\sqrt{28}-\sqrt{31})}{28-31}

=\frac{(\sqrt{4}-\sqrt{7})}{-3} +\frac{(\sqrt{7}-\sqrt{10})}{-3}+......+\frac{(\sqrt{28}-\sqrt{31})}{-3}

=\frac{(\sqrt{7}-\sqrt{4})}{3} +\frac{(\sqrt{10}-\sqrt{7})}{3}+......+\frac{(\sqrt{31}-\sqrt{28})}{3}

= \frac{1}{3}[\sqrt{7}-\sqrt{4}}+\sqrt{10}-\sqrt{7}+......+\sqrt{31}-\sqrt{28}]

Only āˆš4 from the first fraction and āˆš31 from the last fraction will remain as it is, and all the other terms will cancelled out each other. So it becomes

= \frac{1}{3}[\sqrt{31}-\sqrt{4}]

= \frac{\sqrt{31}-\sqrt{4}}{3}

= \frac{\sqrt{31}-2}{3}

\therefore \frac{1}{2+\sqrt{7}} +\frac{1}{\sqrt{7}+\sqrt{10}}+......+\frac{1}{\sqrt{28}+\sqrt{31}}=\frac{\sqrt{31}-2}{3}


Similar questions