Math, asked by raoatchut191, 1 year ago

the value of √1+2008√1+2009√1+2010√1+2011*2013
i need and understandable solution


raoatchut191: its fullll rooooooooot

Answers

Answered by coolprabhav
3

Answer:

It's 2009

Step-by-step explanation:

We know that : ( x + 1 )( x - 1 ) = x^2 -1,

so, root of 1 + (2011)(2013) = root of 1 + 2012^2 - 1 = 2012 itself,

with this following pattern , we can arrive at the answer with 2009.

hence solved xD

Answered by pulakmath007
4

\displaystyle \sf{ \sqrt{(1 + 2008 \sqrt{(1 + 2009 \sqrt{(1 + 2010 \sqrt{1 + 2011 \times 2013} } } } )))   } =  \bf 2009

Given :

\displaystyle \sf{ \sqrt{(1 + 2008 \sqrt{(1 + 2009 \sqrt{(1 + 2010 \sqrt{1 + 2011 \times 2013} } } } )))   }

To find :

Simplify the expression

Solution :

Step 1 of 2 :

Write down the given expression

The given expression is

\displaystyle \sf{ \sqrt{(1 + 2008 \sqrt{(1 + 2009 \sqrt{(1 + 2010 \sqrt{1 + 2011 \times 2013} } } } )))   }

Step 2 of 2 :

Simplify the given expression

\displaystyle \sf{ \sqrt{(1 + 2008 \sqrt{(1 + 2009 \sqrt{(1 + 2010 \sqrt{1 + 2011 \times 2013} } } } )))   }

\displaystyle \sf{  = \sqrt{(1 + 2008 \sqrt{(1 + 2009 \sqrt{(1 + 2010 \sqrt{1 +  \{2012  - 1 \} \times  \{2012 + 1 \}} } } } )))   }

\displaystyle \sf{  = \sqrt{(1 + 2008 \sqrt{(1 + 2009 \sqrt{(1 + 2010 \sqrt{1 +  \{ {2012}^{2}   -  {1}^{2}  \} } } } } )))   }

\displaystyle \sf{  = \sqrt{(1 + 2008 \sqrt{(1 + 2009 \sqrt{(1 + 2010 \sqrt{1 +  \{ {2012}^{2}   -  1  \} } } } } )))   }

\displaystyle \sf{  = \sqrt{(1 + 2008 \sqrt{(1 + 2009 \sqrt{(1 + 2010 \sqrt{  \{ {2012}^{2}     \} } } } } )))   }

\displaystyle \sf{  = \sqrt{(1 + 2008 \sqrt{(1 + 2009 \sqrt{(1 + 2010  \times  2012 } } } )))   }

\displaystyle \sf{  = \sqrt{(1 + 2008 \sqrt{(1 + 2009 \sqrt{(1 +  \{2011 - 1 \} \times   \{2011 + 1 \} } } } )))   }

\displaystyle \sf{  = \sqrt{(1 + 2008 \sqrt{(1 + 2009 \sqrt{(1 +  \{ {2011}^{2}  -  {1}^{2}  \} } } } ))   }

\displaystyle \sf{  = \sqrt{(1 + 2008 \sqrt{(1 + 2009 \sqrt{(1 +  \{ {2011}^{2}  -  1  \} } } } ))   }

\displaystyle \sf{  = \sqrt{(1 + 2008 \sqrt{(1 + 2009 \sqrt{(  \{ {2011}^{2}    \} } } } ))   }

\displaystyle \sf{  = \sqrt{(1 + 2008 \sqrt{(1 + 2009  \times 2011 } } ))   }

\displaystyle \sf{  = \sqrt{(1 + 2008 \sqrt{(1 +  \{2010 - 1 \} \times  \{2010 + 1 \} } } ))   }

\displaystyle \sf{  = \sqrt{(1 + 2008 \sqrt{(1 +  \{ {2010}^{2}  -  {1}^{2}  \} } } ))   }

\displaystyle \sf{  = \sqrt{(1 + 2008 \sqrt{(1 +  {2010}^{2}  -1} } ))   }

\displaystyle \sf{  = \sqrt{(1 + 2008 \sqrt{(  {2010}^{2} } } ))   }

\displaystyle \sf{  = \sqrt{(1 + 2008 \times  2010} )   }

\displaystyle \sf{  = \sqrt{(1 +  \{2009 - 1 \} \times   \{2009 + 1 \}} )   }

\displaystyle \sf{  = \sqrt{(1 +  \{ {2009}^{2}  -  {1}^{2}  \} } )   }

\displaystyle \sf{  = \sqrt{(1 +{2009}^{2}  - 1} )   }

\displaystyle \sf{  = \sqrt{{2009}^{2}  } }

\displaystyle \sf{  = 2009}

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. the value of (√5+√2)²

https://brainly.in/question/3299659

2. Simplify ( 8+√5)(8-√5).

https://brainly.in/question/17061574

Similar questions