The value of (1+cos pi/10) (1+cos 3pi/10) (1+cos 7pi/10) (1+cos 9pi/10)
Answers
Answer: 1/16
Step-by-step explanation:
We know,
Now, moving swiftly to the given equation.
Hence, Required value is 1/16.
Answer:
1/16
Step-by-step explanation:
)sin(π/10)=
4
(
5
−1)
2)sin(3π/10)=
4
(
5
+1)
3)(1−cos
2
(θ))=sin
2
(θ)
4)cos(π−θ)=−cos(θ)
Now, moving swiftly to the given equation.
\begin{lgathered}(1+cos(\pi/10)(1+cos(3\pi/10)(1+cos(7\pi/10)(1+cos(9\pi/10) \\ \\ = (1+cos(\pi/10)(1-cos(7\pi/10)(1+cos(7\pi/10)(1-cos(\pi/10) \\ \\=(1-cos^2(\pi/10)(1-cos^2(7\pi/10) \\ \\=sin^2(\pi/10)sin^2(7\pi/10) \\ \\=[(\frac{(\sqrt{5}-1}{4}) (\frac{(\sqrt{5}-1}{4})]^2\\ \\=[\frac{5-1}{4*4}]^2 \\ \\=\frac{1}{16}\end{lgathered}
(1+cos(π/10)(1+cos(3π/10)(1+cos(7π/10)(1+cos(9π/10)
=(1+cos(π/10)(1−cos(7π/10)(1+cos(7π/10)(1−cos(π/10)
=(1−cos
2
(π/10)(1−cos
2
(7π/10)
=sin
2
(π/10)sin
2
(7π/10)
=[(
4
(
5
−1
)(
4
(
5
−1
)]
2
=[
4∗4
5−1
]
2
=
16
1