Math, asked by ujjwalkumar75, 1 year ago

The value of (1+cos pi/10) (1+cos 3pi/10) (1+cos 7pi/10) (1+cos 9pi/10)

Answers

Answered by rishabh1894041
4

Step-by-step explanation:

 = (1 + cos \frac{\pi}{10} )(1 + cos \frac{9\pi}{10} )(1 + cos \frac{3\pi}{10} )(1 + cos \frac{7\pi}{10} ) \\  = (1  + cos \frac{\pi}{10} )(1 + cos(\pi +  \frac{\pi}{10} ))(1 + cos \frac{3\pi}{10} )(1 + cos(\pi -  \frac{3\pi}{10} )) \\  = (1 + cos \frac{\pi}{10} )(1 - cos \frac{\pi}{10} )(1 + cos \frac{3\pi}{10} )(1 - cos \frac{3\pi}{10} ) \\  = (1 -  {cos}^{2}  \frac{\pi}{10} )(1 -  {cos}^{2}  \frac{3\pi}{10} ) \\  =  {sin}^{2}  \frac{\pi}{10}  {sin}^{2}  \frac{3\pi}{10}  \\  =  ( { \frac{ \sqrt{5} - 1 }{4}) }^{2} ( { \frac{ \sqrt{5}  + 1}{4})  }^{2}  \\  = ( { \frac{ (\sqrt{5}  - 1)( \sqrt{5}  + 1)}{16} )}^{2}  \\  = ( { \frac{4}{16} )}^{2}  \\  =  \frac{1}{16}  \\  \\ hope \: it \: will \: help \: you.

Similar questions