Math, asked by rangaiah47, 1 year ago

the value of
1+i/1-i​

Answers

Answered by varsha3532
0

i

1+i/1-i

firstly, we rationalising this term

1+i/1-i*1+i/1+i

it gives,

(1+i)^2/1^2-i^2

2i/2=i

Answered by chaitanyaraj
0

Answer:

i \: or \:  \sqrt{ - 1}

Step-by-step explanation:

 \frac{1 + i}{1  -  i } \\  =  \frac{1 + i}{1  -  i } \times  \frac{1 + i}{1 + i} \\   = \frac{ {(1 + i)}^{2} }{(1  -  i)(1 + i)}   \\  =  \frac{1 + 2i +  {i}^{2} }{1 -  {i}^{2} }  \\  = \frac{1 + 2i - 1}{1 + 1}  \\  =  \frac{2i}{2}  = i =  \sqrt{ - 1}

i=-1

i^2=-1

Mark brainliest

Similar questions