Math, asked by alpulalatha3, 3 months ago

the value of 1-tan2 15/1+tan2 15​

Answers

Answered by mathdude500
4

Answer:

Question

\bf \:Evaluate : \dfrac{1 -  {tan}^{2}15 °}{1 +  {tan}^{2} 15°}

Answer

Identity used :-

\bf \:cos2x = \dfrac{1 -  {tan}^{2}x }{1 +  {tan}^{2} x}

Solution:

\bf \:\dfrac{1 -  {tan}^{2}15° }{1 +  {tan}^{2} 15°}

\bf\implies \:cos2(15°)

\bf\implies \:cos30°

\bf\implies \:\dfrac{ \sqrt{3} }{2}

____________________________________________

Additional Information

Important Formula's

\bf \:★sin2x = 2sinx \: cosx = \dfrac{2tanx}{1 +  {tan}^{2} x}

\bf \:★cos2x = 1 - 2 {sin}^{2} x =2 {cos}^{2} x - 1 =  {cos}^{2} x -  {sin}^{2} x

\bf \:★tan2x = \dfrac{2tanx}{1 -  {tan}^{2}x }

\bf \:★sin3x = 3sinx -  {4sin}^{3} x

\bf \:★cos3x =  {4cos}^{3} x - 3cosx

_____________________________________________

Similar questions