the value of (1+tan32°)(1+tan13°)/(1+tan23°)(1+tan22°) is
Answers
Answer:
Answer is 1
Step-by-step explanation:
(1+tan32)(1+tan13)= 1+tan32+tan13+tan32tan13 ∵(1+a)(1+b)=1+a+ab
(1+tan23)(1+tan22)=1+tan22+tan23+tan22tan23
32+13=45
apply tan on both sides
tan(32+13)=tan(45)
⇒ \frac{tan32+tan13}{1-tan32tan13}=tan45
1−tan32tan13
tan32+tan13
=tan45 ∵tan(A+B)=\frac{tanA+tanB}{1-tanAtanB}
1−tanAtanB
tanA+tanB
⇒tan32+tan13=1-tan32tan13
⇒tan13+tan32+tan32tan13=1
similarly 22+23=45
⇒tan22+tan23+tan22tan23=1
substituting values in above equations
\frac{(1+tan32)(1+tan13)}{(1+tan23)(1+tan22)}=\frac{1+1}{1+1}
(1+tan23)(1+tan22)
(1+tan32)(1+tan13)
=
1+1
1+1
=1
SOLUTION
TO DETERMINE
The value of
EVALUATION
First we find a general rule to find the required value of the given expression
Let A & B are two angles such that A + B = 45°
Now given expression
Numerator
Since 32° + 13° = 45°
So by the above formula
Denominator
Since 23° + 22° = 45°
So by the above formula
Hence the given expression
━━━━━━━━━━━━━━━━
Learn more from Brainly :-
1. Find the value of
(1+tan13)(1+tan32)+(1+tan12)(1+tan33)
https://brainly.in/question/23306292
2. If cosx+cosy+cosz=0=sinx+siny+sinz then
the possible value of cos(x-y/2)=k then |2k|=?
https://brainly.in/question/19988900