Math, asked by srafi6496, 5 months ago

the value of (1+tan32°)(1+tan13°)/(1+tan23°)(1+tan22°) is​

Answers

Answered by kaustubh11223bh
0

Answer:

Answer is 1

Step-by-step explanation:

(1+tan32)(1+tan13)= 1+tan32+tan13+tan32tan13 ∵(1+a)(1+b)=1+a+ab

(1+tan23)(1+tan22)=1+tan22+tan23+tan22tan23

32+13=45

apply tan on both sides

tan(32+13)=tan(45)

⇒ \frac{tan32+tan13}{1-tan32tan13}=tan45

1−tan32tan13

tan32+tan13

=tan45 ∵tan(A+B)=\frac{tanA+tanB}{1-tanAtanB}

1−tanAtanB

tanA+tanB

⇒tan32+tan13=1-tan32tan13

⇒tan13+tan32+tan32tan13=1

similarly 22+23=45

⇒tan22+tan23+tan22tan23=1

substituting values in above equations

\frac{(1+tan32)(1+tan13)}{(1+tan23)(1+tan22)}=\frac{1+1}{1+1}

(1+tan23)(1+tan22)

(1+tan32)(1+tan13)

=

1+1

1+1

=1

Answered by pulakmath007
8

SOLUTION

TO DETERMINE

The value of

 \displaystyle \sf{ \frac{(1 +  \tan  {32}^{ \circ} )(1 +  \tan  {13}^{ \circ} )}{(1 +  \tan  {23}^{ \circ} )(1 +  \tan  {22}^{ \circ} )} }

EVALUATION

First we find a general rule to find the required value of the given expression

Let A & B are two angles such that A + B = 45°

 \sf{A + B =  {45}^{ \circ} }

 \implies \sf{ \tan(A + B) =  \tan {45}^{ \circ} }

  \displaystyle\implies \sf{ \frac{\tan A  + \tan B}{1 -   \tan A  \tan B\: }   =  1}

  \displaystyle\implies \sf{ \tan A  + \tan B = 1 -   \tan A  \tan B   }

  \displaystyle\implies \sf{ \tan A  + \tan B  +    \tan A  \tan B   = 1 }

  \displaystyle\implies \sf{ 1 + \tan A  + \tan B  +    \tan A  \tan B   = 2 }

  \displaystyle\implies \sf{ (1 + \tan A ) + \tan B(1  +    \tan A  )   = 2 }

  \displaystyle\implies \sf{ (1 + \tan A ) (1  +    \tan B  )   = 2 }

Now given expression

 =  \displaystyle \sf{ \frac{(1 +  \tan  {32}^{ \circ} )(1 +  \tan  {13}^{ \circ} )}{(1 +  \tan  {23}^{ \circ} )(1 +  \tan  {22}^{ \circ} )} }

Numerator

 =  \sf{ (1 +  \tan  {32}^{ \circ} )(1 +  \tan  {13}^{ \circ} )}

Since 32° + 13° = 45°

So by the above formula

 \sf{ (1 +  \tan  {32}^{ \circ} )(1 +  \tan  {13}^{ \circ} )} = 2

Denominator

 =  \sf{ (1 +  \tan  {23}^{ \circ} )(1 +  \tan  {22}^{ \circ} )}

Since 23° + 22° = 45°

So by the above formula

 \sf{ (1 +  \tan  {23}^{ \circ} )(1 +  \tan  {22}^{ \circ} )} = 2

Hence the given expression

 =  \displaystyle \sf{ \frac{(1 +  \tan  {32}^{ \circ} )(1 +  \tan  {13}^{ \circ} )}{(1 +  \tan  {23}^{ \circ} )(1 +  \tan  {22}^{ \circ} )} }

 =  \displaystyle \sf{  \frac{2}{2}  }

 = 1

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. Find the value of

(1+tan13)(1+tan32)+(1+tan12)(1+tan33)

https://brainly.in/question/23306292

2. If cosx+cosy+cosz=0=sinx+siny+sinz then

the possible value of cos(x-y/2)=k then |2k|=?

https://brainly.in/question/19988900

Similar questions