Math, asked by Rushi98801, 9 months ago

The value of ( 1/x) + x if x = 2 -√5

Answers

Answered by Darkrai14
91

★Given:-

\sf x = 2 - \sqrt{5}

★To find:-

\sf x + \dfrac{1}{x}

★Solution

\sf x = 2 - \sqrt{5}

\sf \dfrac{1}{x} = \dfrac{1}{2-\sqrt{5}}

Rationalising it, we will get,

\sf \dfrac{1}{x} = \dfrac{1}{2-\sqrt{5}} \times \dfrac{2 + \sqrt{5}}{2+ \sqrt{5}}=\dfrac{2+\sqrt{5}}{(2)^2 - (\sqrt{5} )^2 }

\sf \implies \dfrac{1}{x} = \dfrac{2+\sqrt{5}}{4-5} = \dfrac{2+\sqrt{5}}{-1} = -2-\sqrt{5}

______________

Now we will find,

\sf x + \dfrac{1}{x}

We will use the identity (a+b)²=a²+b²+2ab to find it

\sf \implies \Bigg ( x + \dfrac{1}{x} \Bigg )^2 =  (x)^2 + \Bigg ( \dfrac{1}{x} \Bigg )^2+ 2 \times x \times \dfrac{1}{x}

\sf \implies \Bigg ( x + \dfrac{1}{x} \Bigg )^2 =  (2 - \sqrt{5})^2 + ( -2 - \sqrt{5} )^2+ 2

\sf \implies \Bigg ( x + \dfrac{1}{x} \Bigg )^2 = ( (2)^2 + (\sqrt{5})^2 - 2 \times 2 \times \sqrt{5} )+ ( (-2)^2 + (\sqrt{5} )^2 + 2 ) + 2

\sf \implies \Bigg ( x + \dfrac{1}{x} \Bigg )^2 = ( 4 + 5 - 4 \sqrt{5} )+ ( 4 + 5 + 4 \sqrt{5} ) + 2

\sf \implies \Bigg ( x + \dfrac{1}{x} \Bigg )^2 = 4 + 5 + 4 + 5+2

\sf \implies \Bigg ( x + \dfrac{1}{x} \Bigg )^2 =20

\sf \implies x + \dfrac{1}{x}=\sqrt{20}

Answer = 20.

Answered by cherryred
54

Answer:

Here is your answer

HOPE IT HELPS

Attachments:
Similar questions