Math, asked by harshkarmakar522, 7 months ago

the value of
{(23+2²)^⅔ + (150-29)^½}²​

Answers

Answered by amankumaraman11
4

 \bf \big\{  {(23 +  {2}^{2} )}^{ \frac{2}{3} }  +  {(150 - 29)}^{ \frac{1}{2} }  \big\}^{2}  \\  \\    \tt\to \big\{ {(23 + 4)}^{ \frac{2}{3} }  +  {(121)}^{ \frac{1}{2} } \big\}  ^{2}   \\  \\   \to \tt  \big \{ {(27)}^{ \frac{2}{3} }   +  \sqrt{121}  \: \big\}^{2}  \\  \\  \to \tt \big \{  { \big[{(27)}^{2} \big]}^{ \frac{1}{3} }   +  \sqrt{11 \times 11} \big\}^{2}  \\  \\  \to \tt \bigg \{ \sqrt[3]{ {(27)}^{2} }  +  \sqrt{ {(11)}^{2} } \bigg\}^{2} \\  \\ \to \tt \bigg \{   \sqrt[3]{27 \times 27} +  {( {11}^{ \cancel2} )}^{ \frac{1}{\cancel2} }  \bigg\}^{2} \\  \\ \to \tt \bigg \{ \sqrt[3]{3 \times 3 \times 3 \times 3 \times 3 \times 3} + 11 \bigg\}^{2} \\  \\ \to \tt \bigg \{  \big(\sqrt[3]{3 \times 3 \times 3}  \big) \times \big( \sqrt[3]{3 \times 3 \times 3} \big) + 11\bigg\}^{2} \\  \\  \to \tt \bigg \{ \bigg(\sqrt[ \cancel3]{ {(3)}^{ \cancel3}  } \bigg) \times  \bigg( \sqrt[ \cancel3]{ {(3)}^{ \cancel3} } \bigg) + 11 \bigg\}^{2} \\  \\ \to \tt \big \{(3 \times 3) + 11\big\}^{2} \\  \\ \to \tt \big \{ 9 + 11\big\}^{2}  \: = {(20)}^{2}  \:  =  \red{400}

\\ \\ \\

  • \rm {(a+b)}^{\frac{m}{n}} = \sqrt[n]{{(a+b)}^{m}}

Similar questions