Math, asked by yogikush0, 10 months ago

the value of 9/cot2theta- 9/ cosec2theta is​

Answers

Answered by ihrishi
1

Step-by-step explanation:

 \frac{9}{ {cot}^{2} \theta }  -  \frac{9}{ {cosec}^{2} \theta }  \\  \\  =  \frac{9 \:  {cosec}^{2} \theta - 9  \: {cot}^{2} \theta}{ {cot}^{2} \theta \times {cosec}^{2} \theta }  \\  \\ =  \frac{9 \: ( {cosec}^{2} \theta - {cot}^{2} \theta)}{ {cot}^{2} \theta\times {cosec}^{2} \theta }  \\  \\  =  \frac{9 \:  \times 1}{ {cot}^{2} \theta\times {cosec}^{2} \theta }  \\  \\  = 9 \times  {tan}^{2}  \theta  \times  {sin}^{2}  \theta \\  \\ = 9 \:   {tan}^{2}  \theta   \:   {sin}^{2}  \theta \\  \\ \purple {\boxed {\boxed {\boxed {\therefore \: \frac{9}{ {cot}^{2} \theta }  -  \frac{9}{ {cosec}^{2} \theta }  = 9 \:   {tan}^{2}  \theta   \:   {sin}^{2}  \theta}}}} \\

Similar questions