Math, asked by mitali18620, 4 months ago

the value of 9cottheta-9cosectheta​

Answers

Answered by VεnusVεronίcα
175

\small  {\boxed {\bf Question:-}}

Find the value of :-

\bf 9cot^2\theta-9cosec^2\theta

 \\

\small \boxed {\bf Solution : -  }

\leadsto \bf 9cot^2\theta -9cosec^2\theta

\leadsto \bf 9( {cosec}^{2} \theta  - 1) - 9 {cosec }^{2}  \theta

\leadsto \bf 9cosec^2\theta -9 - 9 {cosec}^{2}  \theta

\leadsto \bf \cancel {9cosec^2\theta}-9 - \cancel{9cosec^2\theta}

 \leadsto\underline {\boxed {\mathfrak {9cot^2\theta-9cosec^2\theta=-9}}}

 \\

\small \boxed {\bf Identities \: used : - }

\leadsto \bf cot^2\theta=cosec^2\theta-1

 \\

\small \boxed {\bf Know ~more:-}

\leadsto \bf cos^2\theta +  {sin}^{2}  \theta = 1

\leadsto \bf 1 +  {tan}^{2}  \theta =  {sec}^{2}  \theta

 \\

_______________________________________

I hope that you are able to comprehend my working!

Answered by Casper608
11

\leadsto \bf 9cot^2\theta -9cosec^2\theta

\leadsto \bf 9( {cosec}^{2} \theta - 1) - 9 {cosec }^{2} \theta

\leadsto \bf 9cosec^2\theta -9 - 9 {cosec}^{2} \theta

\leadsto \bf \cancel {9cosec^2\theta}-9 - \cancel{9cosec^2\theta}⇝ </p><p>

\leadsto\underline {\boxed {\mathfrak {9cot^2\theta-9cosec^2\theta=-9}}}

\small \boxed {\bf Identities \: used : - } </p><p>

\leadsto \bf cot^2\theta=cosec^2\theta-1

\small \fbox\red{know \: more}</p><p>

\leadsto \bf cos^2\theta + {sin}^{2} \theta = 1

\leadsto \bf 1 + {tan}^{2} \theta = {sec}^{2} \theta

Similar questions