Math, asked by meet7936, 11 months ago

The value of b if f (x) =x²+4√x+b and f(16)=275​

Answers

Answered by Hiteshdetective
2

Answer:

put value of

x = 16

in

 {x}^{2}  + 4 \sqrt{x}  + b \\ 256 + 4 \sqrt{16}  + b \\ 256 + 16 + b = 275

Answered by payalchatterje
0

Answer:

The value of b is 3.

Step-by-step explanation:

Given,

f(x) =  {x}^{2}  + 4 \sqrt{x}  + b

Here also given value of f(16).

We want to find value of b.

We are putting x=16 and get,

f(16) =  {16}^{2}  + 4 \sqrt{16}  + b \\  = 256 + 4  \times 4 + b \\  = 256 + 16 + b \\  = 272 + b

According to question,

272 + b = 275 \\ b = 275 - 272 \\ b = 3

Required value of b is 3.

This is a problem of Algebra.

Some important Algebra formulas.

(a + b)² = a² + 2ab + b²

(a − b)² = a² − 2ab − b²

(a + b)³ = a³ + 3a²b + 3ab² + b³

(a - b)³ = a³ - 3a²b + 3ab² - b³

a³ + b³ = (a + b)³ − 3ab(a + b)

a³ - b³ = (a -b)³ + 3ab(a - b)

a² − b² = (a + b)(a − b)

a² + b² = (a + b)² − 2ab

a² + b² = (a − b)² + 2ab

a³ − b³ = (a − b)(a² + ab + b²)

a³ + b³ = (a + b)(a² − ab + b²)

Know more about Algebra,

1) https://brainly.in/question/13024124

2) https://brainly.in/question/1169549

Similar questions