Math, asked by aniketawari, 4 months ago

the value of cos 105°

Answers

Answered by Anonymous
32

Given: cos 105°

We have to find the value of cos 105°.

━━━━━━━━━━━━━━━━━━━━━━

★ cos 105° can be written as cos(60 + 45)

Here, we use

  • cos(A + B) = cosA . cosB - sinA . sinB

.

Applying the formula

\tt\longrightarrow{cos(60 + 45)}

\tt\longrightarrow{cos60^{\circ} . cos45^{\circ} - sin60^{\circ} . sin45^{\circ}}

.

Values are :-

.

  • \bf{cos60^{\circ} = \dfrac{1}{2}}

.

  • \bf{cos45^{\circ} = \dfrac{1}{\sqrt{2}}}

.

  • \bf{sin60^{\circ} = \dfrac{\sqrt{3}}{2}}

.

  • \bf{sin45^{\circ} = \dfrac{1}{\sqrt{2}}}

.

Putting the values

\tt\longrightarrow{\dfrac{1}{2} \times \dfrac{1}{\sqrt{2}} - \dfrac{\sqrt{3}}{2} \times \dfrac{1}{\sqrt{2}}}

.

\tt\longrightarrow{\dfrac{1}{2 \sqrt{2}} - \dfrac{\sqrt{3}}{2 \sqrt{2}}}

.

\tt\longrightarrow{\dfrac{1 - \sqrt{3}}{2 \sqrt{2}}}

.

Hence,

  • Value of cos 105° is \bf{\dfrac{1 - \sqrt{3}}{2 \sqrt{2}}}.
Similar questions