Math, asked by dharmpalkumar7011, 10 months ago

The value of cos 48 degrees cos 12 degrees

Answers

Answered by ranadinesh777
0

Step-by-step explanation:

Step-by-step explanation:

To find : Solve the expression \cos (48^\circ)\times \cos (12^\circ)cos(48

)×cos(12

)

Solution :

Expression \cos (48^\circ)\times \cos (12^\circ)cos(48

)×cos(12

)

Applying trigonometric identities,

\cos A\cos B=\frac{1}{2}[\cos(A+B)+\cos(A-B)]cosAcosB=

2

1

[cos(A+B)+cos(A−B)]

Substitute, A=48 and B = 12

\cos (48^\circ) \cos (12^\circ)=\frac{1}{2}[\cos(48+12)+\cos(48-12)]cos(48

)cos(12

)=

2

1

[cos(48+12)+cos(48−12)]

\cos (48^\circ) \cos (12^\circ)=\frac{1}{2}[\cos(60)+\cos(36)]cos(48

)cos(12

)=

2

1

[cos(60)+cos(36)]

Substitute, \cos(60)=\frac{1}{2}\ , \cos (36)=\frac{\sqrt5+1}{4}cos(60)=

2

1

,cos(36)=

4

5

+1

\cos (48^\circ) \cos (12^\circ)=\frac{1}{2}[\frac{1}{2}+\frac{\sqrt5+1}{4}]cos(48

)cos(12

)=

2

1

[

2

1

+

4

5

+1

]

\cos (48^\circ) \cos (12^\circ)=\frac{1}{4}+\frac{\sqrt5+1}{8}cos(48

)cos(12

)=

4

1

+

8

5

+1

\cos (48^\circ) \cos (12^\circ)=\frac{2+\sqrt5+1}{8}cos(48

)cos(12

)=

8

2+

5

+1

\cos (48^\circ) \cos (12^\circ)=\frac{3+\sqrt5}{8}cos(48

)cos(12

)=

8

3+

5

Therefore, \cos (48^\circ) \cos (12^\circ)=\frac{3+\sqrt5}{8}cos(48

)cos(12

)=

8

3+

5

Answered by TImmnauel2004
2

cos(48+12)=cos 60

cos 60=1/2

I hope it helps you.

Please do mark as brainliest.

Similar questions