The value of cos²10º - cos10º cos50º + cos² 50º is:
(A) 3/2(1 + cos20º)
(B) 3/4
(C) 3/2
(D) (3/4) + cos20º
Answers
Answered by
4
answer : option (B) 3/4
given, cos²10° - cos10°. cos50° + cos²50°
= (cos10° + cos50°)² - 2cos10°.cos50° -cos10°.cos50°
we know, cosC + cosD = 2cos(C + D)/2. cos(C - D)/2
= (2cos30°.cos20°)² - 3cos10°.cos50°
= (2 × √3/2 .cos20°)² - 3/2 [2cos10°.cos50°]
= 3cos²20° - 3/2 [2cos10°.cos50°]
we know, 2cosC. cosD = cos(C + D) + cos(C - D)
= 3cos²20° - 3/2 [cos60° + cos40°]
= 3cos²20° - 3/2 × 1/2 - 3/2 cos40°
we know, cos2x = 2cos²x - 1
= 3cos²20° - 3/4 - 3/2 [2cos²20° - 1]
= 3cos²20° - 3/4 - 3cos²20° + 3/2
= 3/2 - 3/4
= 3/4
Answered by
2
Answer:
3/4
Step-by-step explanation:
The re-arrangement of the equation can be done this way:
Then the solution for the question goes like this
(∵ )
(∵)
(∵)
Similar questions