the value of (cos4A- sin4A) is equal to
(a) 1-2cos
(b) 2 sinA-1
(c) sin2A-cos2a
(d) 2cos2A-1
Answers
Answer:
The value of \cos ^ { 4 } A - \sin ^ { 4 } A is equal to 2 \cos^2 A - 1
Solution:
Given,
\cos ^ { 4 } A - \sin ^ { 4 } A
The above equation is expressed as
\begin{array} { l } { \cos ^ { 4 } A = \left( \cos ^ { 2 } A \right) ^ { 2 } } \\\\ { \sin ^ { 4 } A = \left( \sin ^ { 2 } A \right) ^ { 2 } } \\\\ { \cos ^ { 4 } A - \sin ^ { 4 } A = \left( \cos ^ { 2 } A \right) ^ { 2 } - \left( \sin ^ { 2 } A \right) ^ { 2 } } \end{array}\\
The above equation is in the form of a^2-b^2=(a+b)(a-b)
\left( \cos ^ { 2 } A \right) ^ { 2 } - \left( \sin ^ { 2 } A \right) ^ { 2 } = \left( \cos ^ { 2 } A + \sin ^ { 2 } A \right) \left( \cos ^ { 2 } A - \sin ^ { 2 } A \right)
We know that \left( \cos ^ { 2 } A + \sin ^ { 2 } A = 1 \right)
Therefore,
\begin{array} { r } { \cos ^ { 4 } A - \sin ^ { 4 } A = ( 1 ) \times \left( \cos ^ { 2 } A - \left( 1 - \cos ^ { 2 } A \right) \right. }\\ \\ { = \cos ^ { 2 } A - 1 + \cos ^ { 2 } A } \\\\ { = 2 \cos ^ { 2 } A - 1 } \end{array}
Therefore,
\cos ^ { 4 } A - \sin ^ { 4 } A = 2 \cos ^ { 2 } A - 1
The required "option d) " is correct.
Step-by-step explanation:
We have,
To find, the value of ) is equal to:
∴
=
Using the algebraic identity,
= (a + b)(a - b)
=
Using the trigonometric identity,
= 1
=
=
Using the trigonometric identity,
= 1
⇒ = 1 -
=
=
=
∴ =
Thus, the required "option d) " is correct.