The value of expression 1−4sin10∘sin70∘2sin10∘
Answers
Answered by
19
Given expression is 1−4sin10∘sin70∘2sin10∘1−4sin10∘sin70∘2sin10∘
⇒1−2[cos60∘−cos80∘]2sin10∘⇒1−2[cos60∘−cos80∘]2sin10∘
⇒1−2[12−cos80∘]2sin10∘⇒1−2[12−cos80∘]2sin10∘
⇒2cos80∘2sin10∘⇒2cos80∘2sin10∘
⇒cos(90∘−10∘)sin10∘⇒cos(90∘−10∘)sin10∘
⇒sin10∘sin10∘⇒sin10∘sin10∘
⇒1
⇒1−2[cos60∘−cos80∘]2sin10∘⇒1−2[cos60∘−cos80∘]2sin10∘
⇒1−2[12−cos80∘]2sin10∘⇒1−2[12−cos80∘]2sin10∘
⇒2cos80∘2sin10∘⇒2cos80∘2sin10∘
⇒cos(90∘−10∘)sin10∘⇒cos(90∘−10∘)sin10∘
⇒sin10∘sin10∘⇒sin10∘sin10∘
⇒1
Answered by
8
Answer:
The value of expression is 4.54.
Step-by-step explanation:
Given : Expression -
To find : The value of the expression
Solution :
Step 1 - Write the expression
Step 2- Take common
Step 3- Applying property of trigonometry
Step 4- Put value of
Step 5- Applying property of trigonometry
Put value of
Value of and
The value of expression is 4.54.
Similar questions